Ir al contenido

Documat


Global Kuranishi charts and a product formula in symplectic Gromov–Witten theory

  • Amanda Hirschi [1] ; Mohan Swaminathan [2]
    1. [1] Pierre and Marie Curie University

      Pierre and Marie Curie University

      París, Francia

    2. [2] Stanford University

      Stanford University

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00982-y
  • Enlaces
  • Resumen
    • We construct global Kuranishi charts for the moduli spaces of stable pseudoholomorphic maps to a closed symplectic manifold in all genera. This is used to prove a product formula for symplectic Gromov–Witten invariants. As a consequence we obtain a Künneth formula for quantum cohomology.

  • Referencias bibliográficas
    • Abouzaid, M., McLean, M., Smith, I.: Complex cobordism, Hamiltonian loops and global Kuranishi charts. (2021). arXiv:2110.14320
    • Abouzaid, M., McLean, M., Smith, I.: Gromov-Witten invariants in complex-oriented generalised cohomology theories. arXiv:2307.01883, to appear...
    • Arbarello, E., Cornalba, M., Griffiths, P.A.: Geometry of algebraic curves. Volume II, volume 268 of Grundlehren der MathematischenWissenschaften...
    • Bai, S., Xu, G.: An integral Euler cycle in normally complex orbifolds and Z-valued Gromov-Witten type invariants. (2022). arXiv:2201.02688
    • Behrend, K.: The product formula for Gromov-Witten invariants. J. Algebraic Geom. 8(3), 529–541 (1999)
    • Behrend, K., Manin, Yu.: Stacks of stable maps and Gromov-Witten invariants. Duke Math. J. 85(1), 1–60 (1996)
    • Bredon, G.E.: Sheaf theory. Graduate Texts in Mathematics, vol. 170, 2nd edn. Springer-Verlag, New York (1997)
    • Cieliebak, K., Mohnke, K.: Symplectic hypersurfaces and transversality in Gromov-Witten theory. J. Symplectic Geom. 5(3), 281–356 (2007)
    • Fukaya, K., Ono, K.: Arnold conjecture and Gromov-Witten invariant. Topology 38(5), 933–1048 (1999)
    • Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In Algebraic geometry—Santa Cruz 1995, volume 62 of Proc. Sympos....
    • Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Reprint...
    • Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci....
    • Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, (1977)
    • Hirschi, A.: Properties of Gromov-Witten invariants defined via global Kuranishi charts. (2023). arXiv:2312.03625
    • Hirschi, A., Wang, L.: On Donaldson’s 4–6 question. (2024). arXiv:2309.07041
    • Hofer, H., Wysocki, K., Zehnder, E.: A general Fredholm theory II: implicit function theorems. Geom. Funct. Anal. 19(1), 206–293 (2009)
    • Hofer, H., Wysocki, K., Zehnder, E.: sc-smoothness, retractions and new models for smooth spaces. Discrete Contin. Dyn. Syst. 28(2), 665–788...
    • Hofer, H., Wysocki, K., Zehnder, E.: Applications of polyfold theory I: the polyfolds of Gromov-Witten theory. Mem. Am. Math. Soc. 248(1179),...
    • Hofer, H., Wysocki, K., Zehnder, E.: Polyfold and Fredholm theory, volume 72 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge....
    • Hyvrier, C.: A product formula for Gromov-Witten invariants. J. Symplectic Geom. 10(2), 247–324 (2012)
    • Ionel, E.-N., Parker, T.H.: Thin compactifications and relative fundamental classes. J. Symplectic Geom. 17(3), 703–752 (2019)
    • Kontsevich,M.,Manin, Yu.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164(3), 525–562 (1994)
    • Kontsevich, M., Manin, Yu.: Quantum cohomology of a product. Invent. Math. 124(1–3), 313–339 (1996). (With an appendix by R. Kaufmann)
    • Li, J., Tian, G.: Virtual moduli cycles and Gromov-Witten invariants of general symplectic manifolds. In Topics in symplectic 4-manifolds...
    • McDuff, D., Salamon, D.: J -holomorphic curves and symplectic topology. American Mathematical Society Colloquium Publications, vol. 52, 2nd...
    • McDuff, D., Wehrheim, K.: Smooth Kuranishi atlases with isotropy. Geom. Topol. 21(5), 2725–2809 (2017)
    • Palais, R.: On the existence of slices for actions of non-compact lie groups. Ann. Math. 73, 295 (1961)
    • Pardon, J.: An algebraic approach to virtual fundamental cycles on moduli spaces of pseudoholomorphic curves. Geom. Topol. 20(2), 779–1034...
    • Robbin, J.W., Ruan, Y., Salamon, D.A.: The moduli space of regular stable maps. Math. Z. 259(3), 525–574 (2008)
    • Ruan, Y., Tian, G.: A mathematical theory of quantum cohomology. J. Differ. Geom. 42(2), 259–367 (1995)
    • Ruan, Y., Tian, G.: Higher genus symplectic invariants and sigma models coupled with gravity. Invent. Math. 130(3), 455–516 (1997)
    • Siebert, B.: Gromov-Witten invariants of general symplectic manifolds. (1998). arXiv:dg-ga/9608005
    • The Stacks Project authors. The Stacks Project. https://stacks.math.columbia.edu, (2024)
    • Swaminathan, M.: Rel-C∞ structures on Gromov-Witten moduli spaces. J. Symplectic Geom. 19(2), 413–473 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno