Ir al contenido

Documat


Genus and book thickness of reduced cozero-divisor graphs of commutative rings

  • Edward Jesili [1] ; Krishnan Selvakumar [1] ; Thirugnanam Tamizh Chelvam [1]
    1. [1] Department of Mathematics, Manonmaniam Sundaranar University.India
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 2, 2024, págs. 455-473
  • Idioma: inglés
  • DOI: 10.33044/revuma.3906
  • Enlaces
  • Referencias bibliográficas
    • M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 no. 5 (2011), 753–762. MR...
    • D. F. Anderson, T. Asir, A. Badawi, and T. Tamizh Chelvam, Graphs from rings, Springer, Cham, 2021. DOI MR Zbl
    • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
    • D. Archdeacon, Topological graph theory: a survey, Congr. Numer. 115 (1996), 5–54. MR Zbl
    • M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969. MR Zbl
    • I. Beck, Coloring of commutative rings, J. Algebra 116 no. 1 (1988), 208–226. DOI MR Zbl
    • M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 no. 4 (2011), 727–739. DOI MR Zbl
    • F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B 27 no. 3 (1979), 320–331. DOI MR Zbl
    • J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier, New York, 1976. MR Zbl
    • I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392....
    • G. Chartrand and F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré Sect. B (N.S.) 3 (1967), 433–438. MR Zbl
    • E. Jesili, K. Selvakumar, and T. Tamizh Chelvam, On the genus of reduced cozero-divisor graph of commutative rings, Soft Comput. 27 (2023),...
    • S. Kavitha and R. Kala, On the genus of graphs from commutative rings, AKCE Int. J. Graphs Comb. 14 no. 1 (2017), 27–34. DOI MR Zbl
    • B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore,...
    • K. Selvakumar, M. Subajini, and M. J. Nikmehr, Finite commutative ring with genus two essential graph, J. Algebra Appl. 17 no. 7 (2018), Paper...
    • F. Shaveisi and R. Nikandish, The nil-graph of ideals of a commutative ring, Bull. Malays. Math. Sci. Soc. 39 suppl. 1 (2016), S3–S11. DOI...
    • T. Tamizh Chelvam and T. Asir, On the genus of the total graph of a commutative ring, Comm. Algebra 41 no. 1 (2013), 142–153. DOI MR Zbl
    • H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 no. 2 (2006), 666–678. DOI MR Zbl
    • A. T. White, Graphs, groups and surfaces, North-Holland Mathematics Studies, No. 8, North-Holland, Amsterdam-London; American Elsevier, New...
    • C. Wickham, Rings whose zero-divisor graphs have positive genus, J. Algebra 321 no. 2 (2009), 377–383. DOI MR Zbl
    • A. Wilkens, J. Cain, and L. Mathewson, Reduced cozero-divisor graphs of commutative rings, Int. J. Algebra 5 no. 17-20 (2011), 935–950. MR...
    • M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, J. Algebra Appl. 11 no. 6 (2012), Paper No. 1250114, 14 pp. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno