Ir al contenido

Documat


Some New Results on Itô–Doob Hadamard Fractional Stochastic Pantograph Equations in Lp Spaces

  • Wei Zhang [1] ; Jinbo Ni [1]
    1. [1] Anhui University of Science and Technology

      Anhui University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01190-x
  • Enlaces
  • Resumen
    • In this paper, we investigate the well-posedness, regularity, Ulam-Hyers stability, and averaging principle for solutions of Itô–Doob stochastic Hadamard fractional pantograph equations of order α∈(1/2, 1) in L p spaces with p≥2. We first establish the existence and uniqueness of results by applying the Banach fixed point theorem, and demonstrate the continuous dependence of the solutions on the initial values.We then prove the time regularity of the solutions to the proposed equations and show that the solutions are (α−1 2 )-Hölder continuous. Next, we analyze the Ulam–Hyers stability of the considered equations utilizing the Gronwall inequality. Finally, we study the averaging principle for the studied equations under a general averaging condition. Our results are illustrated with two examples.

  • Referencias bibliográficas
    • 1. Sousa, J.V.D.C., Capelas de Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)
    • 2. Podlubny, I.: Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods...
    • 3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland Math. Stud.,...
    • 4. Sun, H.G., Zhang, Y., Baleanu, D., Chen,W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and...
    • 5. Sousa, J.V.D.C., Capelas de Oliveira, E.: Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 77, 305–311...
    • 6. Sousa, J.V.D.C., Capelas de Oliveira, E.: A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ. Equ....
    • 7. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood Publishing Limited, Chichester (2008)
    • 8. Øksendal, B.: Stochastic Differential Equations, 6th edn. Universitext Springer-Verlag, Berlin (2003)
    • 9. Hussain, S., Madi, E.N., Khan, H., Etemad, S., Rezapour, S., Sitthiwirattham, T., Patanarapeelert, N.: Investigation of the stochastic...
    • 10. Hussain, S., Madi, E.N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., Kaabar, M.K.A.: On the stochastic modeling of COVID-19 under...
    • 11. Xu,W., Xu,W., Lu, K.: An averaging principle for stochastic differential equations of fractional order 0<α<1. Fract. Calc. Appl....
    • 12. Wang, W., Cheng, S., Guo, Z., Yan, X.: A note on the continuity for Caputo fractional stochastic differential equations. Chaos 30(7),...
    • 13. Yang, Z., Zheng, X., Wang, H.: Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations. Z. Angew....
    • 14. Huong, P.T., The, N.T.: Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations. Statist....
    • 15. Huong, P.T., Kloeden, P.E., Son, D.T.:Well-posedness and regularity for solutions of Caputo stochastic fractional differential equations...
    • 16. Dhanalakshmi, K., Balasubramaniam, P.: Ulam-Hyers stability for second-order non-instantaneous impulsive fractional neutral stochastic...
    • 17. Ahmed, H.M., Zhu, Q.: The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math....
    • 18. Ulam, S.M.: A Collection of Mathematical Problems. Interscience tracts in pure and applied mathematics. Interscience Publishers, New York-London...
    • 19. Khan, I., Zada, A.: Analysis of abstract partial impulsive integro-differential system with delay via integrated resolvent operator. Qual....
    • 20. Sousa, J.V.D.C., Capelas de Oliveira, E.:Ulam-Hyers stability of a nonlinear fractionalVolterra integrodifferential equation. Appl. Math....
    • 21. Capelas de Oliveira, E., Sousa, J.V.D.C.: Ulam-Hyers-Rassias stability for a class of fractional integrodifferential equations. Results...
    • 22. Makhlouf, A.B., Mchiri, L.: Some results on the study of Caputo–Hadamard fractional stochastic differential equations. Chaos Solit. Fract....
    • 23. Ahmad, M., Zada, A., Ghaderi, M., George, R., Rezapour, S.: On the existence and stability of a neutral stochastic fractional differential...
    • 24. Rhaima, M.: Ulam type stability for Caputo–Hadamard fractional functional stochastic differential equations with delay. Math. Methods...
    • 25. Mchiri, L., Makhlouf, A.B., Rguigui, H.: Ulam-Hyers stability of pantograph fractional stochastic differential equations. Math. Methods...
    • 26. Ma, Y., Khalil, H., Zada, A., Popa, I.L.: Existence theory and stability analysis of neutral ψ-Hilfer fractional stochastic differential...
    • 27. Has’minski˘ı, R.Z.:On the principle of averaging the Itô’s stochastic differential equations.Kybernetika 4, 260–279 (1968)
    • 28. Xiao, G., Feˇckan, M., Wang, J.: On the averaging principle for stochastic differential equations involving Caputo fractional derivative....
    • 29. Liu, J., Wei, W., Wang, J., Xu, W.: Limit behavior of the solution of Caputo–Hadamard fractional stochastic differential equations. Appl....
    • 30. Liu, J., Xu, W.: An averaging result for impulsive fractional neutral stochastic differential equations. Appl. Math. Lett. 114, 106892...
    • 31. Guo, Z., Xu, Y., Wang, W., Hu, J.: Averaging principle for stochastic differential equations with monotone condition. Appl. Math. Lett....
    • 32. Guo, Z., Hu, J., Yuan, C.: Averaging principle for a type of Caputo fractional stochastic differential equations. Chaos 31(5), 053123...
    • 33. Wang, Z., Lin, P.: Averaging principle for fractional stochastic differential equations with L p convergence. Appl. Math. Lett. 130, 108024...
    • 34. Liu, Y., Wang, Y., Caraballo, T.: Nontrivial equilibrium solutions and general stability for stochastic evolution equations with pantograph...
    • 35. Balachandran, K., Kiruthika, S., Trujillo, J.J.: Existence of solutions of nonlinear fractional pantograph equations. Acta Math. Sci....
    • 36. Ockendon, J.R., Tayler, A.B.: The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. Lond. A. 322, 447–468...
    • 37. Dida, R., Boulares, H., Moumen, A., Alzabut, J., Bouye, M., Laskri, Y.: On stability of second order pantograph fractional differential...
    • 38. Ayadi, S., Alzabut, J., Selvam, A.G.M., Vignesh, D.: On stability results for a nonlinear generalized fractional hybrid pantograph equation...
    • 39. Alfwzan, W.F., Khan, H., Alzabut, J.: Stability analysis for a fractional coupled Hybrid pantograph system with p-Laplacian operator....
    • 40. Khaminsou, B., Sudsutad, W., Thaiprayoon, C., Alzabut, J., Pleumpreedaporn, S.: Analysis of impulsive boundary value pantograph problems...
    • 41. Afshari, H., Marasi, H.R., Alzabut, J.: Applications of new contraction mappings on existence and uniqueness results for implicit φ-Hilfer...
    • 42. Makhlouf, A.B., Mchiri, L., Mtiri, F.: Existence, uniqueness, and averaging principle for Hadamard Itô–Doob stochastic delay fractional...
    • 43. Kahouli, O., Makhlouf, A.B., Mchiri, L., Rguigui, H.: Hyers-Ulam stability for a class of Hadamard fractional Itô-Doob stochastic integral...
    • 44. Luo, D., Zhu, Q., Luo, Z.: An averaging principle for stochastic fractional differential equations with time-delays. Appl. Math. Lett....
    • 45. Mchiri, L.: Ulam-Hyers stability of fractional Itô–Doob stochastic differential equations. Math. Meth. Appl. Sci. 46(13), 13731–13740...
    • 46. Makhlouf, A.B., Mchiri, L., Arfaoui, H., Dhahri, S., El-Hady, E., Cherif, B.: Hadamard Itô–Doob stochastic fractional order systems. Discrete...
    • 47. Gao, D., Li, J., Luo, Z., Luo, D.: The averaging principle for stochastic pantograph equations with non-Lipschitz conditions. Math. Probl....
    • 48. Mouy,M., Boulares, H., Alshammari, S., Alshammari,M., Laskri,Y., Mohammed,W.W.:On averaging principle for Caputo–Hadamard fractional stochastic...
    • 49. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s equation and Jensen’s inequality. Birkhäuser,...
    • 50. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2011)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno