Ir al contenido

Documat


Analysis of Abstract Partial Impulsive Integro-Differential System with Delay via Integrated Resolvent Operator

  • Ishfaq Khan [1] ; Akbar Zada [1]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this manuscript, we employ integrated resolvent operator to derive the variation of constants formula for the solution of the impulsive integro-differential system, in nonlocal domain with finite delay function. Using the Banach fixed point theorem and integrated resolvent operator, we explore the existence of mild solution of the aforementioned system. Additionally, we establish the Hyers–Ulam stability of the system. Finally, the main result is illustrated with the help of an example.

  • Referencias bibliográficas
    • 1. Abbas, S., Benchohra, M., N’Guerekata, G.M.: Instantaneous and noninstantaneuos impulsive integrodifferential equations in Banach spaces....
    • 2. Benchohra, M., Abbas, S.: Advanced Functional Evolutions and Inclusions. Springer, Switzerland (2015)
    • 3. Ahmed, S., Shah, K., Jahan, S., Abdeljawad, T.: An efficient method for the fractional electric circuits based on Fibonacci wavelet. Res....
    • 4. Alkhazzan, A., Baleano, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential equations...
    • 5. Khan, A., Khan, H., Gomez-Aguilar, J., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential...
    • 6. Baleanu, D., Ghafarnezhad, K., Rezapour, S., Shabibi, M.: On the existence of solutions of a three steps crisis integro-differential equation....
    • 7. Baleanu, D., Mohammadi, H., Rezapour, S.: On modelling of epidemic childhood diseases with the Caputo–Fabrizio derivative by using the...
    • 8. Benchohra, M., Henderson, J., Ntouyas, S.K.: An existence result for first order impulsive functional differential equations in Banach...
    • 9. Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York...
    • 10. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference...
    • 11. Chang, Y.K., Li, W.S.: Solvability for impulsive neutral integro-differential equations with statedependent delay via fractional operators....
    • 12. Castro, L.P., Simoes, A.M.: Different types of Hyers–Ulam–Rassias stability for a class of integrodifferential equations. Filomat 31,...
    • 13. Diop, A., Dieye, M., Diop, M.A., Ezzinbi, K.: Integro-differential equations of volterra type with nonlocal and impulsive conditions....
    • 14. Ezzinbi, K., Ghnimi, S.: Existence and regularity for some partial neutral functional integro-differential equations with nondense domain....
    • 15. Ezzinbi, K., Ghnimi, S.: Solvability of nondensely defined partial functional integro-differential equations using the integrated resolvent...
    • 16. Ezzinbi, K., Ziat, M.: Nonlocal integro-differential equations without the assumptions of equicontinuity on the resolvent operators. Differ....
    • 17. Grimmer, R.C.: Resolvent operators for integral equations in a Banach space. Am. Math. Soc. 273, 333–349 (1982)
    • 18. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)
    • 19. Hao, X., Liu, L.:Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces. Math. Methods Appl. Sci....
    • 20. Hao, X., Liu, L.: Mild solution of second order impulsive integro-differential evolution equations of volterra type in Banach spaces....
    • 21. Harnandez, E., Pierri, M., Goncalves, G.: Existence results for an impulsive abstract partial differential equation with state-dependent...
    • 22. Hernandez, E., Rolnik, V., Ferrari, T.M.: Existence and uniqueness of solutons for abstract integrodifferential equations with state-dependent...
    • 23. Jeet, K., Sukavanam, N.: Approximate controllability of nonlocal and impulsive integro-differential equations using the resolvent operator...
    • 24. Khan, H., Tunc, C., Chen, W., Khan, A.: Existence theorems and Hyers–Ulam stability for a class of hybrid fractional differential equations...
    • 25. Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G.: Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled...
    • 26. Khan, H., Alzabut, J., Baleanu, D., Shah, A., He, Z., Etemad, S., Rezapour, S., Zada, A.: On fractalfractional waterborne disease model:...
    • 27. Khan, H., Tunc, C., Khan, A.: Stability results and existence theorems for nonlinear delay-fractional differential equations with ϕ∗ p-operator....
    • 28. Kucche, K.D., Shikhare, P.U.: Ulam–Hyers stabilities for nonlinear volterra delay integro-differential equations via a fixed point approach....
    • 29. Lakshmikantham, V., Bainov, D., Simeonov, P.S.: Theory of Impulsive Differential Equations. Singapore, World Seientific (1989)
    • 30. Nisar, S.K., Munusamy, K., Ravichandran, C.: Results on existence of solutions in nonlocal partial functional integrodifferential equations...
    • 31. Oka, H.: Integrated resolvent operator. J. Integral Equ. Appl. 7, 193–232 (1995)
    • 32. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, Sina, Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion...
    • 33. Samoilenka, A.M., Perestyunk, N.A.: Impulsive Differential Equations. Singapore, World Seientific (1995)
    • 34. Shah, K., Abdeljawad, T., Arshad, A.: Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo...
    • 35. Refaai, D.A., El-Sheikh, M.M.A., Ismail, G.A.F., Abdalla, B., Abdeljawad, T.: Hyers–Ulam stability of impulsive volterra integro-differential...
    • 36. Sevgin, S., Sevli, H.: Stability of a nonlinear volterra integro-differential equations via a fixed point approach. J. Nonlinear Sci....
    • 37. Wang, J., Zada, A., Ali, W.: Ulam’s type stability of first-order impulsive differential equations with variable delay in quasi-Banach...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno