Ir al contenido

Documat


Controllability Analysis of Neutral Stochastic Differential Equation Using Ã-Hilfer Fractional Derivative with Rosenblatt Process

  • M. Lavanya [1] ; B. Sundara Vadivoo [3] ; Kottakkaran Sooppy Nisar [2]
    1. [1] Alagappa University

      Alagappa University

      India

    2. [2] Prince Sattam Bin Abdulaziz University

      Prince Sattam Bin Abdulaziz University

      Arabia Saudí

    3. [3] Central University of Tamil Nadu
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this study, we examine the controllability of a neutral stochastic fractional equation of motion that incorporates the ψ-Hilfer fractional derivative and the Rosenblatt process. Utilizing the measure of non-compactness and the Banach contraction mapping, we derive insights into the existence and unique characteristics of the mild solution for the system. We establish the prerequisites for controllability for both linear and nonlinear systems and confirm the controllability of nonlinear cases using the Banach contraction principle. To illustrate our theoretical findings, we provide numerical examples that highlight the practical implications of our analysis. This combined theoretical and numerical approach enhances the understanding of controllability in neutral stochastic fractional equations with the ψ-Hilfer fractional derivative and Rosenblatt process.

  • Referencias bibliográficas
    • 1. Alkhazzan, A., Wang, J., Nie, Y., Khan, H., Alzabut, J.: An effective transport-related SVIR stochastic epidemic model with media coverage...
    • 2. Alkhazzan, A., Jiang, P., Baleanu, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential...
    • 3. Ahmed, H.M.: Noninstantaneous impulsive conformable fractional stochastic delay integro-differential system with Rosenblatt process and...
    • 4. Ahmed, H.M.: Sobolev type fractional stochastic integro-differential equations with nonlocal conditions in Hilbert space. J. Theor. Probab....
    • 5. Almalahi, M.A., Panchal, S.K.: Some properties of implicit impulsive coupled system via ψ-Hilfer fractional operator. Bound. Value Probl....
    • 6. Shah, A., Khan, R.A., Khan, A., Khan, H., Gómez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential...
    • 7. Zidane, B., Derbazi, C., Alzabut, J., Samei, M.E., Kaabar, M.K.A., Siri, Z.: Monotone iterative method for ψ-Caputo fractional differential...
    • 8. Balachandran, K., Kokila, J.: On the controllability of fractional dynamical system. Int. J. Appl. Math. Comput. Sci. 23(2), 523–531 (2012)
    • 9. Berhail, A., Tabouche, N., Alzabut, J., Samei, M.E.: Using the Hilfer-Katugampola fractional derivative in initial-value Mathieu fractional...
    • 10. Jiang, B., Zhao, Y., Dong, J., Jiangping, H.: Analysis of the influence of trust in opposing opinions: an inclusiveness-degree based signed...
    • 11. Baishya, C., Premakumari, R.N., Samei, M.E., Naik, M.K.: Chaos control of fractional order nonlinear Bloch equation by utilizing sliding...
    • 12. Zhu, C., Al-Dossari, M., Rezapour, S., Shateyi, S.: On the exact soliton solutions and different wave structures to the modified Schrodinger’s...
    • 13. Thaiprayoon, C., Sudsutad, W., Alzabut, J., Etemad, S., Rezapour, S.: On the qualitative analysis of the fractional boundary value problem...
    • 14. Tudor, C.A.: Analysis of the Rosenblatt process. ESAIM Probab. Stat. 12, 230–257 (2002)
    • 15. de Sousa, J.C.V., Kucche, K.D., de Oliveira, E.C.: Stability of ψ-Hilfer impulsive fractional differential equations. Appl. Math. Lett....
    • 16. Baleanu, D., Khan, H., Jafari, H., Khan, R.A.: On the exact solution of wave equations on cantor sets. Entropy 17(9), 6229–6237 (2015)
    • 17. Klebaner, Fima C.: Introduction to stochastic calculus with applications. Imperial College Press, London (2012)
    • 18. Friedman, A.: Stochastic differential equations and applications. Dover publications, New York (2004)
    • 19. Shen, G., Sakthivel, R., Ren, Y., Li, M.: Controllability and stability of fractional stochastic functional systems driven by Rosenblatt...
    • 20. Gou, H., Li, Y.: A study on approximate controllability of non-autonomous evolution system with nonlocal conditions using sequence method....
    • 21. Gou, H., Li, Y.: A study on the approximate controllability of damped elastic systems using sequence method. Qual. Theory Dyn. Syst. 23(1),...
    • 22. Tajadodi, H., Khan, A., Francisco Gómez-Aguilar, J., Khan, H.: Optimal control problems with Atangana–Baleanu fractional derivative. Optim....
    • 23. Ahmed, H.M.: Non-linear fractional integro-differential systems with non-local conditions. IMA J. Math. Control Inf. 33(2), 389–399 (2016)
    • 24. Ahmed, H.M., El-Owaidy, H.M., AL-Nahhas, M.A.: Neutral fractional stochastic partial differential equations with Clarke subdifferential....
    • 25. Ahmed, H.M., El-Borai, M.M., El-Owaidy, H.M., Ghanem, A.S.: Existence solution and controllability of Sobolev type delay nonlinear fractional...
    • 26. Ahmed, H.M., El-Borai, M.M., Ramadan, M.E.: Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with...
    • 27. Harikrishnan, S., Shah, K., Baleanu, D., Kanagarajan, K.: Note on the solution of random differential equations via ψ-Hilfer fractional...
    • 28. Khan, H., Alzabut, J., Baleanu, D., Alobaidi, G., Rehman, M.-U.: Existence of solutions and a numerical scheme for a generalized hybrid...
    • 29. Khan, H., Alzabut, J., Shah, A., He, Z.Y., Etemad, S., Rezapour, S., Zada, A.: On fractal-fractional waterborne disease model: a study...
    • 30. Iswarya, M., Raja, R., Rajchakit, G., Cao, J., Alzabut, J., Huang, C.: A perspective on graph theory based stability analysis of impulsive...
    • 31. Alzabut, J., Alobaidi, G., Hussain, S., Madi, E.N., Khan, H.: Stochastic dynamics of influenza infection: qualitative analysis and numerical...
    • 32. Dong, J., Jiangping, H., Zhao, Y., Peng, Y.: Opinion formation analysis for expressed and private opinions (EPOs) models: reasoning private...
    • 33. JinRong, J.R., Ahmed, H.M.: Null controllability of nonlocal Hilfer fractional stochastic differential equations. Miskole Math. Notes...
    • 34. Kotsamran, K., Sudsutad, W., Thaiprayoon, C., Kongson, J., Alzabut, J.: Analysis of a nonlinear ψ-Hilfer fractional integro-differential...
    • 35. Kharade, J.P., Kucche, K.D.: On the impulsive implicit ψ-Hilfer fractional differential equations with delay. Math. Methods Appl. Sci....
    • 36. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)
    • 37. Lavanya, M., Vadivoo, B.S.: Analysis of controllability in Caputo-Hadamard stochastic fractional differential equations with fractional...
    • 38. Lqbal, M.Q., Hussain, A.: Existence criteria via α−ψ-contractive mappings of ψ-fractional differential nonlocal boundary value problems....
    • 39. Lv, J., Yang, X.: A class of Hilfer fractional stochastic differential equations and optimal controls. Advances in Difference Equations...
    • 40. Rajendran, M.L., Balachandran, K., Trujillo, J.J.: Controllability of nonlinear stochastic neutral fractional dynamical systems. Nonlinear...
    • 41. Hakkar, N., Muruganantham, L., Debbouche, A., Vadivoo, S.: Nonlinear fractional order neutral-type stochastic integro-differential system...
    • 42. Norouzi, F., N’Guerekata, G.: A study of ψ-Hilfer fractional deifferential system with application in financial crisis. Chaos Solitons...
    • 43. Ordaz-Oliver, J.P., Santos-Sánchez, O.J., López-Morales, V.: Optimal control applications and methods toward a generalized sub-optimal...
    • 44. Pachpatte, D.B.: Properties of some ψ-Hilfer fractional integro-differential equation. eprint arxiv: 2004.02619, (2020)
    • 45. Podlubny, I.: Fractinal differential equations. Mathematics in Science and Engineering, vol. 198. Technical University of Kosice, Kosice,...
    • 46. Begum, R., Tunc, O., Khan, H., Gulzan, H., Khan, A.: A fractional order zika virus model with Mittag–Leffler kernel. Chaos Solitons Fractals...
    • 47. Thabet, S.T., Matar, M.M., Salman, M.A., Samei, M.E., Vivas-Cortez, M., Kedim, I.: On coupled snap system with integral boundary conditions...
    • 48. Sakthivel, R., Revathi, P., Ren, Y., Shen, G.: Retarded stochastic differential equations with infinite delay driven by Rosenblatt process....
    • 49. Bhairat, S.P., Samei, M.E.: Nonexistence of global solutions for a Hilfer–Katugampola fractional differential problem. Partial Differ....
    • 50. Hussain, S.,Madi, E.N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., Kaabar,M.K.: On the stochastic modeling of COVID-19 under the...
    • 51. Sivasankar, I., Udhayakumar, R., Abd Elmotaleb, A.M.A., Elamin, S.R., Etemad, S., Awadalla, M.: Attractive solutions for Hilfer fractional...
    • 52. Smart, R.D.: Fixed point theorems, vol. 66. Cambridge University Press Archive, Cambridge (1980)
    • 53. Nadeem, S., Mushtaq, A., Alzabut, J., Ghazwani, H.A., Eldin, S.M.: The flow of an Eyring Powell nanofluid in a porous peristaltic channel...
    • 54. Thabet, S.T.M., Vivas-Cortez, M., Kedim, I., Samei, M.E., Ladh Ayari, M.: Solvability of a -Hilfer fractional snap dynamic system on unbounded...
    • 55. Vadivoo, B.S., Jothilakshmi, G., Almalki, Y., Debbouche, A., Lavanya, M.: Relative controllability analysis of fractional order differential...
    • 56. de Sousa, J.V.C., de Oliveria, E.C.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)
    • 57. Govindaraj, V., George, R.K.: Functional approach to observability and controllability of linear fractional dynamical systems. J. Dyn....
    • 58. Sudsutad, W., Thaiprayoon, C., Ntouyas, S.K.: Existence and stability results for ψ-Hilfer fractonal integro-differential equation with...
    • 59. Alnafisah, Y., Ahmed, H.M.: Neutral delay Hilfer fractional integro differential equations with fractional Brownian motion, Evolution...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno