Ir al contenido

Documat


On (˛, )-Relaxed Polygonal Metric Spaces and Fixed Point Results

  • Bessem Samet [1]
    1. [1] King Saud University

      King Saud University

      Arabia Saudí

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We introduce the notion of(α, ν)-relaxed polygonal metric spaces, where α > 0 and ν :

      [0,∞) → [0,∞) is a function satisfying certain conditions. This notion generalizes the concept of s-relaxedp metric spaces proposed by Fagin et al. (SIAM J Discrete Math 17(1): 134–160, 2003). The originality of the introduced notion is justified by examples of (α, ν)-relaxed polygonal metric spaces that are not s-relaxedp metric spaces. We establish several properties of (α, ν)-relaxed polygonal metric spaces. In particular, we introduce the concept of (α, ν)-metric bounded distance, and show that, if δ : Z × Z → [0,∞) is symmetric, then δ is a (α, ν)-relaxed polygonal metric, if and only if δ is a (α, ν)-metric bounded distance. We next define the convergence of sequences, Cauchy sequences, and completeness. We also establish some fixed point results in (α, ν)-relaxed polygonal metric spaces. Namely, we extend the Banach contraction principle and the Kannan fixed point theorem from metric spaces to (α, ν)- relaxed polygonal metric spaces. The novelty of our fixed point results are supported by examples in which the standard Banach and Kannan fixed point theorems are not applicable.

  • Referencias bibliográficas
    • 1. Bakhtin, I.A.: Contracting mapping principle in an almost metric space (Russian). Funkts. Anal. 30, 26–37 (1989)
    • 2. Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3(1), 133–181 (1922)
    • 3. Berzig, M.: First results in suprametric spaces with applications. Mediter. J. Math. 19(5), 1–18 (2022)
    • 4. Branciari, A.: A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen. 57, 31–37...
    • 5. Ciri´ ´ c, L.B.: A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 45, 267–273 (1974)
    • 6. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)
    • 7. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete. Math. 17(1), 134–160 (2003)
    • 8. James, N.D., Zucker, J.: A class of contracting stream operators. Comput. J. 56(1), 15–33 (2013)
    • 9. Jleli, M., Samet, B.: The Kannan’s fixed point theorem in a cone rectangular metric space. J. Nonlinear Sci. Appl. 2(3), 161–167 (2009)
    • 10. Jleli, M., Samet, B.: On a new generalization of metric spaces. J. Fixed Point Theory Appl. 20(3), 128 (2018)
    • 11. Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)
    • 12. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)
    • 13. Matthews, S.G.: Partial Metric Spaces; Research Report 212; Department of Computer Science. University of Warwick, Warwich (1992)
    • 14. Miranker, D.P.: Metric-space indexes as a basis for scalable biological databases. OMICS A J. Integr. Biol. 7(1), 57–60 (2003)
    • 15. Mitrovi´c, Z.D., Aydi, H., Radenovi´c, S.: On Banach and Kannan type results in cone bv(s)-metric spaces over Banach algebra. Acta Math....
    • 16. Mustafa, Z., Sims, B.: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 7, 289–297 (2006)
    • 17. Ozturk, V., Radenovi´c, S.: Hemi metric spaces and Banach fixed point theorem. Appl. Gen. Topol. 25(1), 175–181 (2024)
    • 18. Petrov, E., Bisht, R.K.: Fixed point theorem for generalized Kannan type mappings. Rend. Circ. Mat. Palermo. I I, 1–18 (2024)
    • 19. Popescu, O.: A new class of contractive mappings. Acta Math. Hung. 164, 570–579 (2021)
    • 20. Reich, S.: Some remarks concerning contraction mappings. Canad. Math. Bull. 14, 121–124 (1971)
    • 21. Smyth, M.B.: Quasi uniformities: reconciling domains with metric spaces. In: Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Proceedings...
    • 22. Tucker, J.V., Zucker, J.I.: Continuity of operators on continuous and discrete time streams. Theor. Comput. Sci. 412, 3378–3403 (2011)
    • 23. Weisman, D., Simovici, D.A.: Several remarks on the metric space of genetic codes. Int. J. Data Min. Bioinf. 6(1), 17–26 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno