Ir al contenido

Documat


Hemi metric spaces and fixed point theorems

  • Ozturk, Vildan [2] ; Radenovic, Stojan [1]
    1. [1] University of Belgrade

      University of Belgrade

      Serbia

    2. [2] Ankara Hacı Bayram Veli University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 1, 2024, págs. 175-182
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.19780
  • Enlaces
  • Resumen
    • In this work, we will define a new type metric with degree m and m+1 points which is called m-hemi metric as a generalization of two metric spaces. We will give and prove some topological properties. Also, Banach contraction mapping principle were proved and a application to Fredholm integral equation were gived in hemi metric spaces.

  • Referencias bibliográficas
    • M. Abtahi, Z. Kadelburg and S. Radenovic, Fixed points and coupled fixed points in partially ordered v-generalized metric spaces, Appl. General...
    • I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26-37.
    • A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. 57 (2000), 31-37. https://doi.org/10.5486/PMD.2000.2133
    • S. Chandok, V. Ozturk and S. Radenovic, On fixed points in context of b-metric spaces, Matematicki Vesnik 71, no. 1-2 (2019), 23-30. https://doi.org/10.1007/s11818-019-0204-x
    • V. V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal. 72 (2010), 1-14. https://doi.org/10.1016/j.na.2009.04.057
    • K. P. Chi and H. T. Thuy, A fixed point theorem in 2-metric spaces for a class of maps that satisfy a contractive condition dependent on an...
    • H. Choia, S. Kim and S. Y. Yang, Structure for g-metric spaces and related fixed point theorems, arxiv:1804.03651.
    • P. Das, A fixed point theorem in a generalized metric space, Soochow J. Math. 33, no. 1 (2007), 33-39.
    • E. Deza and M. Deza, Dictionary of Distances, Elsevier, Amsterdam, 2006.
    • M. Deza and E. Deza, Encyclopedia of Distances, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-00234-2
    • M. Deza and I. G. Rosenberg, Small cones of m-hemimetrics, Discrete Mathematics 291 (2005), 81-97, https://doi.org/10.1016/j.disc.2004.04.022
    • B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Cal. Math. Soc. 84 (1992), 329-336.
    • H. S. Ding, V. Ozturk and S. Radenovic, On some new fixed point results in b-rectangular metric spaces, Journal of Nonlinear Sciences and...
    • Z. M. Fadail, A. G. B. Ahmad, V. Ozturk and S. Radenovic, Some remarks on fixed point results of b2-metric spaces, Far East J. Math. Sci....
    • S. Gähler, 2-metriche raume and ihre topologische strucktur, Mathematische Nachrichten 26 (1963), 115-148. https://doi.org/10.1002/mana.19630260109
    • R. George, S. Radenovic, K. P. Reshma and S. Shukla, Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl. 8 (2015),...
    • F. Jahangir, P. Haghmaram and K. Nourouzi, A note on F-metric spaces, J. Fixed Point Theory Appl. 23 (2021): 2. https://doi.org/10.1007/s11784-020-00836-y
    • M. Jleli and B. Samet, On a new generalizations of metric spaces theorems, J. Fixed Point Theory Appl. 20 (2018): 128. https://doi.org/10.1007/s11784-018-0606-6
    • M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, J. Fixed Point Theory Appl. 2012 (2012): 210. https://doi.org/10.1186/1687-1812-2012-210
    • M. Khamsi, Generalized metric spaces: A survey, J. Fixed Point Theory Appl. 17 (2015), 455-475. https://doi.org/10.1007/s11784-015-0232-5
    • B. K. Lahiri, P. Das and L. K. Dey, Cantor's theorem in 2-Metric spaces and its applications to fixed point problems, Taiwanese Journal...
    • S. N. Lal and A. K. Singh, An analogue of Banach's contraction principle for 2-metric spaces, Bulletin of the Australian Mathematical...
    • D. Lateefa, and J. Ahmad, Dass and Gupta's fixed point theorem in F-metric spaces, J. Nonlinear Sci. Appl. 12 (2019), 405-411. https://doi.org/10.22436/jnsa.012.06.06
    • S. G. Matthews, Partial metric topology. Research Report 212. Department of Computer Science, University of Warwick (1992).
    • S. G. Matthews, Partial metric topology, general topology and its applications, Proceedings of the 8th Summer Conference, Queen's College...
    • Z. Mustafa, B. Sims, A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis 7, no. 2 (2006), 289-297.
    • G. Nallaselli, A. J. Gnanaprakasam, G. Mani, Z. D. Mitrović, A. Aloqaily and N. Mlaiki, Integral equation via fixed point theorems on a new...
    • V. Ozturk, Some results for Ciric Presic type contractions in F-Metric Spaces, Symmetry 15, no. (2023): 1521. https://doi.org/10.3390/sym15081521
    • V. Ozturk, Fixed Point Theorems in b-Rectangular Metric Spaces, Universal Journal of Mathematics and Applications 3, no. 1 (2020), 28-32....
    • M. Warrens, If d is super-metric, then d/(1+d) is super-metric, International Mathematical Forum 12, no. 18 (2017), 861-868. https://doi.org/10.12988/imf.2017.7874
    • W. A. Wilson, On semi-metric Spaces, American Journal of Mathematics 53, no. 2 (1931), 361-373. https://doi.org/10.2307/2370790

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno