Ir al contenido

Documat


Implications of the delayed feedback effect on the stability of a SIR epidemic model

  • Autores: Roxana López Cruz
  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 10, Nº. Extra 1, 2023, págs. 29-40
  • Idioma: inglés
  • DOI: 10.17268/sel.mat.2023.01.03
  • Enlaces
  • Resumen
    • A basic mathematical model in epidemiology is the SIR (Susceptible–Infected–Removed) model, which is commonly used to characterize and study the dynamics of the spread of some infectious diseases. In humans, the time scale of a disease can be short and not necessarily fatal, but in some animals (for example, insects) this same short time scale can make the disease fatal if we take into account their life expectancy. In this work, we will see how a positive feedback effect (decrease of the susceptible population at small densities) in a SIR model can cause a qualitative characterization of the dynamics defined by the original SIR model. Finally, we will also show with numerical simulations how a delay in the feedback effect causes very interesting qualitative changes of the system with epidemiological significance.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno