Ir al contenido

Documat


Identification of Common Factors in Multivariate Time Series Modeling

  • MARIANO GONZÁLEZ [1] ; JUAN M. NAVE [2]
    1. [1] Universidad CEU Cardenal Herrera

      Universidad CEU Cardenal Herrera

      Valencia, España

    2. [2] Universidad de Castilla-La Mancha

      Universidad de Castilla-La Mancha

      Ciudad Real, España

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 38, Nº. 1, 2015, págs. 219-238
  • Idioma: inglés
  • DOI: 10.15446/rce.v38n1.48812
  • Títulos paralelos:
    • Identificación de factores comunes en la modelización multivariante de series temporales
  • Enlaces
  • Resumen
    • español

      Para la modelización multivariante de series temporales no estacionarias es imprescindible conocer el número de factores comunes que definen el comportamiento de las series. La forma tradicional de abordar este problema es el estudio de las relaciones de cointegración entre los datos a travé de las pruebas de la traza y el máximo valor propio, obteniendo el número de relaciones de largo plazo estacionarias. Como alternativa, se pueden emplear modelos factoriales dinámicos que estiman el número de factores comunes, estacionarios o no, que describen el comportamiento de los datos. En este contexto, analizamos empíricamente el resultado de aplicar tales métodos a series simuladas mediante modelos factoriales conocidos, y a datos reales de los mercados financieros. Los resultados muestran que cuando hay factores comunes estacionarios, cuando el número de observaciones se reduce y/o cuando las variables participan en más de una relación de cointegración, la prueba de factores comunes es más potente que las pruebas habituales de cointegración. Estos resultados, junto con la mayor flexibilidad para identificar la matriz de cargas del proceso generador de datos, hacen que los modelos de factores dinímicos sean más adecuados para su utilización en el análisis multivariante.

    • English

      For multivariate time series modelling, it is essential to know the number of common factors that define the behaviour. The traditional approach to this problem is investigating the number of cointegration relations among the data by determining the trace and the maximum eigenvalue and obtaining the number of stationary long-run relations. Alternatively, this problem can be analyzed using dynamic factor models, which involves estimating the number of common factors, both stationary and not, that describe the behaviour of the data. In this context, we empirically analyze the power of such alternative approaches by applying them to time series that are simulated using known factorial models and to financial market data. The results show that when there are stationary common factors, when the number of observations is reduced and/or when the variables are part of more than one cointegration relation, the common factors test is more powerful than the usually applied cointegration tests. These results, together with the greater flexibility to identify the loading matrix of the data generating process, render dynamic factor models more suitable for use in multivariate time series analysis.

  • Referencias bibliográficas
    • Ahlgren, N.,Antell, J.. (2008). 'Bootstrap and fast double bootstrap tests of cointegration rank with financial time series'. Computational...
    • Baillie, R. T.,Bollerslev, T.. (1994). 'Cointegration, fractional cointegration, and exchange rate dynamics'. Journal of Finance....
    • Banerjee, A.,Dolado, J. J.,Mestre, R.. (1998). 'Error correction mechanism tests for cointegration in a single-equation framework'....
    • Bauer, D.,Wagner, M.. (2009). 'Using subspace algorithm cointegration analysis: Simulation performance and application to term structure'....
    • Bayer, C.,Hanck, C.. (2013). 'Combining non-cointegration tests'. Journal of Time Series Analysis. 34. 83-95
    • Cavaliere, G.,Taylor, A. M.. (2006). 'Testing the null of co-integration in the presence of variance breaks'. Journal of Time Series...
    • Chen, Y. P.,Huang, H. C.,Tu, I. P.. (2010). 'A new approach for selecting the number of factors'. Computational Statistics and Data...
    • Cheung, Y. W.,Lay, K. S.. (1993). 'Finite-sample sizes of Johansen's likelihood ratio tests for cointegration'. Oxford Bulletin...
    • Correal, M. E.,Peña, D.. (2008). 'Thresold dynamic factor model'. Revista Colombiana de Estadística. 31. 183-192
    • Cubadda, G.. (2007). 'A unifying framework for analysing common cyclical features in cointegrated time series'. Computational Statistics...
    • Davidson, J.,Monticini, A.. (2007). 'Test for cointegration with structural breaks base on subsamples'. Computational Statistics and...
    • Diebold, F. X.,Gardeazabal, J.,Yilmaz, K.. (1994). 'On cointegration and exchange rate dynamics'. Journal of Finance. 49. 727-735
    • Dittmann, I.. (2000). 'Residual-based tests for fractional cointegration: A Monte Carlo study'. Journal of Time Series Analysis. 21....
    • Doornik, J. A.,O'Brien, R. J.. (2002). 'Numerically stable cointegration analysis'. Computational Statistics and Data Analysis....
    • Engle, R. F.,Granger, C. W. J.. (1987). 'Cointegration and error correction: Representation, estimation and testing'. Econometrica....
    • Escribano, A.,Peña, D.. (1994). 'Cointegration and common factors'. Journal of Time Series Analysis. 15. 577-586
    • Forni, M.,Hallin, M.,Lippi, M.,Reichlin, L.. (2005). 'The generalized dynamic-factor model: One-sided estimation and forecasting'....
    • Gonzalo, J.. (1994). 'Five alternative methods of estimating long-run equilibrium relationshisps'. Journal of Econometrics. 60. 203-233
    • Gonzalo, J.,Granger, C. W. J.. (1995). 'Estimation of common long-memory components in cointegrated systems'. Journal of Business...
    • Gonzalo, J.,Lee, T. H.. (1998). 'Pitfalls in testing for long-run relationshisps'. Journal of Econometrics. 86. 129-154
    • González, M.,Nave, J. M.. (2010). 'Portfolio immunization using Independent Component Analysis'. The Spanish Review of Financial Economics....
    • Hallin, M.,Liska, R.. (2007). 'Determining the number of factors in the general dynamic factor model'. Journal of the American Statistical...
    • Hu, Y. P.,Chou, R. J.. (2003). 'A dynamic factor model'. Journal of Time Series Analysis. 24. 529-538
    • Hu, Y. P.,Chou, R. J.. (2004). 'On the Peña-Box model'. Journal of Time Series Analysis. 25. 811-830
    • Jing, L.,Junsoo, L.. (2010). 'ADL tests for threshold cointegration'. Journal of Time Series Analysis. 31. 241-254
    • Kapetanios, G.,Marcellino, M.. (2009). 'A parametric estimation method for dynamic factor models of large dimensions'. Journal of...
    • Lansangan, J. R.,Barrios, E. B.. (2009). 'Principal components analysis of nonstationary time series data'. Statistics and Computing....
    • Li, Q.,Pan, J.,Yao, Q.. (2009). 'On determination of cointegration ranks'. Statistics and Its Interface. 2. 45-56
    • Lopes, H. F.,Gamerman, D.,Salazar, E.. (2011). 'Generalized spatial dynamic factor models'. Computational Statistics and Data Analysis....
    • Lorenzo-Seva, U.,Timmerman, M. E.,Kiers, H. A.. (2011). 'The Hull method for selecting the number of common factors'. Multivariate...
    • Miller, J. I.. (2010). 'Cointegrating regressions with messy regressors and an application to mixed-frecuency series'. Journal of...
    • Pan, J.,Yao, Q.. (2010). 'Modelling multiple time series via common factors'. Biometrika. 95. 365-379
    • Park, B.,Mammen, E.,Hardle, W.,Borak, S.. (2009). 'Modelling dynamic semiparametric factor models'. Journal of the American Statistical...
    • Park, S.,Ahn, S. K.,Cho, S.. (2011). 'Modelling dynamic semiparametric factor models'. Computational Statistics and Data Analysis....
    • Peña, D.,Box, G. E. P.. (1987). 'Identifying a simplifying structure in time series'. Journal of the American Statistical Association....
    • Peña, D.,Poncela, P.. (2006). 'Nonstationary dynamic factor analysis'. Journal of Statistical Planning and Inference. 136. 1237-1257
    • Peña, D.,Sanchez, I.. (2007). 'Measuring the advantages of multivariate versus univariate forecasts'. Journal of Time Series Analysis....
    • Pesavento, E.. (2007). 'Residuals-based tests for the null of no-cointegration: An analytical comparision'. Journal of Time Series...
    • Stock, J. H.,Watson, M. W.. (1988). 'Testing for common trends'. Journal of the American Statistical Association. 83. 1097-1107
    • Trenkler, C.,Saikkonen, P.,Lütkepohl, H.. (2007). 'Testing for the cointegrating rank of a VAR process with level shift and trend break'....
    • Westerlund, J.,Egderton, D. L.. (2006). 'New improved tests for cointegration with structural breaks'. Journal of Time Series Analysis....
    • Widaman, K. F.. (1993). 'Common Factors Analysis versus Principal Component Analysis: Differential bias in representing model'. Multivariate...
    • Zhang, H.. (2009). 'Comparación entre dos métodos de reducción de dimensionalidad en series de tiempo'. Revista Colombiana de Estadística....
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno