This paper continues a series in which we study deficiencies in previously published works concerning fixed point assertions for digital images.
Referencias bibliográficas
T. Botmart, A. Shaheen, A. Batool, S. Etemad, and S. Rezapour, A novel scheme of k-step iterations in digital metric spaces, AIMS Math. 8,...
L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
G. Chartrand and S. Tian, Distance in digraphs, Comput. Math. Appl. 34, no. 11 (1997), 15-23. https://doi.org/10.1016/S0898-1221(97)00216-2
B. Dass and S. Gupta, An extension of Banach's contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975),...
O. Ege and I. Karaca, Digital homotopy fixed point theory, C. R. Math. Acad. Sci. Paris 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
N. Gupta, A. Singh, and G. Modi, Application of fixed point theorems for digital contractive type mappings in digital metric space, Int. J....
S. E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19
D. Jain, Expansive mappings in digital metric spaces, Bull. Pure Appl. Sci. 37E (Math & Stat.), no. 1 (2018), 101-108. https://doi.org/10.5958/2320-3226.2018.00011.5
K. Jyoti, A. Rani, and A. Rani, Digital-β-ψ-contractive type mappings in digital metric spaces, Int. Rev. Pure Appl. Math. 13, no. 1 (2017),...
K. Jyoti and A. Rani, Fixed point theorems for β-ψ-ϕ-expansive type mappings in digital metric spaces, Asian J. Math. Comput. Res. 24, no....
E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proc. IEEE Intl. Conf. Systems, Man, Cybernetics (1987), 227-234.
A. Khan, Unique fixed point theorem for weakly digital metric spaces involving auxiliary functions, Int. J. of Math. Appl. 11, no. 2 (2023),...
A. Mishra, P. K. Tripathi, A. K. Agrawal, and D. R. Joshi, Common fixed point under Jungck contractive condition in a digital metric space,...
R. Pal, Application of fixed point theorem for digital images, Int. J. Adv. Res. 10, no. 1 (2022), 1110-1126. https://doi.org/10.21474/IJAR01/14152
A. Rani, K. Jyoti and A. Rani, Common fixed point theorems in digital metric spaces, Int. J. of Sci. Eng. Res. 7, no. 12 (2016), 1704-1715....
A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recogn. Lett. 4 (1986), 177 - 184. https://doi.org/10.1016/0167-8655(86)90017-6
A. S. Saluja and J. Jhade, Dass and Gupta's fixed-point theorem in digital metric space, Int. J. Math. Comput. Res. 11, no. 12 (2023),...
B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for α-ψ-contractive mappings, Nonlinear Anal.: Theory, Methods Appl. 75, no. 4 (2012),...
K. Shukla, Some fixed point theorems in digital metric spaces satisfying certain rational inequalities, J. Emerging Technol. Innovative Res....
K. Sridevi, M. V. R. Kameshwari, and D. M. K. Kiran, Fixed point theorem for digital contractive type mappings in digital metric space, Int....