Ir al contenido

Documat


Remarks on fixed point assertions in digital topology, 6

  • Boxer, Laurence [1]
    1. [1] Niagara University

      Niagara University

      Town of Lewiston, Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 24, Nº. 2, 2023, págs. 281-305
  • Idioma: inglés
  • DOI: 10.4995/agt.2023.18996
  • Enlaces
  • Resumen
    • This paper continues a series discussing flaws in published assertions concerning fixed points in digital metric spaces.

  • Referencias bibliográficas
    • R. Bhardwaj, Q. A. Kabir, S. Gupta, and H. G. S. Kumar, Digital soft α-ψ-contractive type mapping in digital soft metric spaces, J. Comput....
    • L. Boxer, Digitally continuous functions, Pattern Recogn. Lett. 15, no. 8 (1994), 833- 839. https://doi.org/10.1016/0167-8655(94)90012-4
    • L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456
    • L. Boxer, Continuous maps on digital simple closed curves, Appl. Math. 1 (2010), 377-386. https://doi.org/10.4236/am.2010.15050
    • L. Boxer, Remarks on fixed point assertions in digital topology, 2, Appl. Gen. Topol. 20, no. 1 (2019), 155-175. https://doi.org/10.4995/agt.2019.10667
    • L. Boxer, Remarks on fixed point assertions in digital topology, 3, Appl. Gen. Topol. 20, no. 2 (2019), 349-361. https://doi.org/10.4995/agt.2019.11117
    • L. Boxer, Remarks on fixed point assertions in digital topology, 4, Appl. Gen. Topol. 21, no. 2 (2020), 265-284. https://doi.org/10.4995/agt.2020.13075
    • L. Boxer, Remarks on fixed point assertions in digital topology, 5, Appl. Gen. Topol. 23, no. 2 (2022) 437-451. https://doi.org/10.4995/agt.2022.16655
    • L. Boxer and P. C. Staecker, Remarks on fixed point assertions in digital topology, Appl. Gen. Topol. 20, no. 1 (2019), 135-153. https://doi.org/10.4995/agt.2019.10474
    • M. S. Chauhan S. Rajesh, V. Rupali, and K. Q. Aftab, Fixed point theorem for quadruple self-mappings in digital metric space, Int. J. Sci....
    • S. Dalal, I. A. Masmali, and G. Y. Alhamzi, Common fixed point results for compatible map in digital metric space, Adv. Pure Math. 8 (2018),...
    • B. K. Dass and S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math. 6 (1975), 1455-1458.
    • U. P. Dolhare and V. V. Nalawade, Fixed point theorems in digital images and applications to fractal image compression, Asian J. Math. Comput....
    • O. Ege, D. Jain, S. Kumar, C. Park, and D. Y. Shin, Commuting and compatible mappings in digital metric spaces, J. Fixed Point Theory Appl....
    • O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
    • O. Ege and I. Karaca, Digital homotopy fixed point theory, C. R. Math. Acad. Sci. Paris 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
    • S.-E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018
    • S.-E. Han, Banach fixed point theorem from the viewpoint of digital topology, J. Nonlinear Sci. Appl. 9 (2016), 895-905. https://doi.org/10.22436/jnsa.009.03.19
    • A. Hossain, R. Ferdausi, S. Mondal, and H. Rashid, Banach and Edelstein fixed point theorems for digital images, J. Math. Sci. Appl. 5, no....
    • D. Jain, Common fixed point theorem for compatible mappings of type (K) in digital metric spaces, Int. J. Math. Appl. 6 (2-A) (2018), 289-293....
    • D. Jain, Compatible mappings of type (R) in digital metric spaces, Int. J. Adv. Res. Trends Eng. Technol. 5, no. 4 (2018), 67-71.
    • D. Jain and S. Kumar, Fixed point theorem for α-ψ-expansive mappings in digital metric spaces, J. Basic Appl. Eng. Res. 4, no. 6 (2017), 406-411.
    • D. Jain, S. Kumar, and C. Park, Weakly compatible mappings in digital metric spaces, seemingly unpublished.
    • G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 11, no. 2 (1988), 285-288. https://doi.org/10.1155/S0161171288000341
    • R. Kalaiarasi and R. Jain, Fixed point theory in digital topology, Int. J. Nonlinear Anal. Appl. 13 (2022), 157-163.
    • M. V .R. Kameswari, D. M. K. Kiran, and R. K. Mohana Rao, Edelstein type fixed point theorem in digital metric spaces, J. Appl. Sci. Comput....
    • P. H. Krishna, K. K. M. Sarma, K. M. Rao, and D. A. Tatajee, Common fixed point theorems of Geraghty type contraction maps for digital metric...
    • P. H. Krishna and D .A. Tatajee, Geraghty contraction principle for digital images, Int. Res. J. Pure Algebr. 9, no. 9 (2019), 64-69.
    • I. A. Masmali, G. Y. Alhamzi, and S. Dalal, α-β-ψ-φ contraction in digital metric spaces, Amer. J. Math. Anal. 6, no. 1 (2018), 5-15.
    • A. Rosenfeld, 'Continuous' functions on digital pictures, Pattern Recognit. Lett. 4 (1986), 177-184. https://doi.org/10.1016/0167-8655(86)90017-6
    • B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for α-ψ-contractive type mappings, Nonlinear Anal. 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
    • K. Shukla, On digital metric space satisfying certain rational inequalities, Appl. Appl. Math. 16, no. 1 (2021), 223- 236.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno