Ir al contenido

Documat


T_0 functional Alexandroff topologies are partial metrizable

  • Pajoohesh, Homeira [1]
    1. [1] Medgar Evers College

      Medgar Evers College

      Estados Unidos

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 305-319
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.19401
  • Enlaces
  • Resumen
    • If f : X → X is a function, the associated functional Alexandroff topology on X is the topology whose closed sets are { A ⊆ X : f ( A ) ⊆ A } . We prove that every functional Alexandroff topology is pseudopartial metrizable and every T0 functional Alexandroff topology is partial metrizable. 

  • Referencias bibliográficas
    • P. Alexandroff, Diskrete Räume, Mat. Sb 44, no. 3 (1937), 501-519.
    • I. Altun, and S. Romaguera, Characterizations of partial metric completeness in terms of weakly contractive mappings having fixed point, Appl....
    • A. B. Amor, S. Lazaar, T. Richmond, and H. Sabri, k-primal spaces, Topology Appl. 309 (2022), Paper No. 107907. https://doi.org/10.1016/j.topol.2021.107907
    • F. Ayatollah Zadeh Shirazi, S. Karimzadeh Dolatabad, and S. Shamloo, Interaction between cellularity of Alexandroff spaces and entropy of...
    • F. Ayatollah Zadeh Shirazi, and N. Golsetani, Functional Alexandroff spaces, Hacet. J. Math. Stat. 40, no. 4 (2011), 515-522.
    • M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metric spaces, American Mathematical Monthly 116 (2009), 708-718. https://doi.org/10.4169/193009709X460831
    • O. Echi, The categories of flows of Set and Top, Topology Appl. 159, no. 9 (2012), 2357-2366. https://doi.org/10.1016/j.topol.2011.11.059
    • A. Guale, and J. Vielma, A topological approach to the Ulam-Kakutani-Collatz conjecture, Topology Appl. 256 (2019), 1-6. https://doi.org/10.1016/j.topol.2019.01.012
    • M. Jacob, and T. Richmond, The lattice of functional Alexandroff topologies, Order 38, no. 1 (2021), 1-11. https://doi.org/10.1007/s11083-020-09523-6
    • E. Khalimsky, R. Kopperman, and P. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36, no. 1 (1990),...
    • T. Y. Kong, R. Kopperman, and P. Meyer, A topological approach to digital topology, Amer. Math. Monthly 98, no. 10 (1991), 901-917. https://doi.org/10.1080/00029890.1991.12000810
    • R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metrizability in value quantales, Applied General Topology 5, no. 1 (2004), 115-127....
    • R. Kopperman, S. Matthews, and H. Pajoohesh, Completions of partial metrics into value lattices, Topology Appl. 156 (2009), 1534-1544. https://doi.org/10.1016/j.topol.2009.01.002
    • S. Lazaar, H. Sabri, and R. Tahri, On some topological properties in the class of Alexandroff spaces, Turkish J. Math. 45, no. 1 (2021), 479--486....
    • S. Lazaar, T. Richmond, and H. Sabri, The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces, Comm. Algebra...
    • S. G. Matthews, The topology of partial metric spaces, Computer Science, 1992
    • S. G. Matthews, Partial metric topology, Proc. 8th summer conference on topology and its applications, ed S. Andima et al., New York Academy...
    • S. Matthews, and H. Pajoohesh, Partial metrics valued into $[0,infty]$, preprint.
    • M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315, no. 1 (2004), 135-149. https://doi.org/10.1016/j.tcs.2003.11.016
    • O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6, no. 2 (2005), 229-240. https://doi.org/10.4995/agt.2005.1957

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno