Ir al contenido

Documat


On Banach fixed point theorems for partial metric spaces

  • Valero, Oscar [1]
    1. [1] Universitat de les Illes Balears

      Universitat de les Illes Balears

      Palma de Mallorca, España

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 6, Nº. 2, 2005, págs. 229-240
  • Idioma: inglés
  • DOI: 10.4995/agt.2005.1957
  • Enlaces
  • Resumen
    • In this paper we prove several generalizations of the Banach fixed point theorem for partial metric spaces (in the sense of O’Neill) given in, obtaining as a particular case of our results the Banach fixed point theorem of Matthews ([12]), and some well-known classical fixed point theorems when the partial metric is, in fact, a metric.

  • Referencias bibliográficas
    • Ravi P. Agarwal, Maria Meehan, Donal O’Regan, Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
    • D. W. Boyd, J. S. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9
    • M. A. Bukatin, J. S. Scott, Towards computing distances between programs via Scott domains, in: Logical Foundations of Computer Sicence, Lecture...
    • M. A. Bukatin, S. Y. Shorina, Partial metrics and co-continuous valuations, in: Foundations of Software Science and Computation Structures,...
    • S. K. Chatterjee, Fixed point theorems, Rend. Acad. Bulgare Sc. 25 (1972), 727-730.
    • L. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (1971), 20-26.
    • J. Dugundji, A. Granas, Fixed Point Theory, Monografie Matematyczne, Vol. 61, Polish Scientific Publishers, 1982.
    • M. H. Escardo, PCF extended with real numbers, Theoretical Computer Science 162 (1996), 79-115. http://dx.doi.org/10.1016/0304-3975(95)00250-2
    • P. Fletcher, W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
    • R. Kannan, Some results on fixed points, Bull. Calcuta Math,. Soc. 60 (1968), 71-76.
    • H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology,...
    • S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728...
    • S. Oltra, S. Romaguera, E.A. Sánchez-Pérez, Bicompleting weightable quasi-metric spaces and partial metric spaces, Rend. Circolo Mat. Palermo,...
    • S. Oltra, O. Valero, Banach’s fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste 36 (2004), 17–26.
    • S. J. O’Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann....
    • E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465. http://dx.doi.org/10.1090/S0002-9939-1962-0148046-1
    • S. Reich, Kannan’s fixed point thorem, Boll. U. M. I. 4 (1971), 1-11.
    • S. Romaguera, M. Schellekens, Weightable qusi-metric semigroups and semilattices, In: Proc. MFCSIT2000, Electronic Notes in Theoretical Computer...
    • S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topology Appl., to appear.
    • M. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theoret. Comput. Sci. 305 (2003), 409-432. http://dx.doi.org/10.1016/S0304-3975(02)00705-3
    • M. Schellekens, The correpondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135-149. http://dx.doi.org/10.1016/j.tcs.2003.11.016
    • A. K. Seda, Quasi-metrics and fixed point in computing, Bull. EATCS 60 (1996), 154-163.
    • P. Waszkierwicz, Quantitative continuous domains, Appl. Categor. Struct. 11 (2003),41-67. http://dx.doi.org/10.1023/A:1023012924892
    • P. Waszkierwicz, The local triangle axiom in topology and domain theory, Appl. Gen. Topology 4 (2003), 47-70.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno