Ir al contenido

Documat


Approximate Controllability for Semilinear Fractional Stochastic Evolution Equations

  • Yiming Jiang [1] ; Jingchuang Ren [1] ; Yawei Wei [1] ; Jie Xue [1]
    1. [1] Nankai University

      Nankai University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01133-6
  • Enlaces
  • Resumen
    • In this paper, we show the approximate controllability for a class of semilinear fractional stochastic systems in abstract space with the Riemann–Liouville fractional derivative. The key of the proof is the existence of the mild solution for the proposed problem. These results are based on new properties of the operator obtained by he subordination principle, compact semigroup and Schauder fixed point theorem.

      Here we obtain the compactness of the solution operator by using Arzelà–Ascoli theorem. As an application, we establish the approximate controllability of the stochastic Rayleigh–Stokes problem for a generalized second grade fluid.

  • Referencias bibliográficas
    • 1. Allen, M., Caffarelli, L., Vasseur, A.: A parabolic problem with a fractional time derivative. Arch. Ration. Mech. Anal. 221(2), 603–630...
    • 2. Bashirov, A.E., Mahmudov, N.I.: On concepts of controllability for linear deterministic and stochastic systems. SIAM J. Control. Optim....
    • 3. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh–Stokes problem for a generalized second-grade fluid. Num. Math....
    • 4. Caraballo, T., Ngoc, T.B., Thach, T.N., Tuan, N.H.: On initial value and terminal value problems for subdiffusive stochastic Rayleigh–Stokes...
    • 5. Dong, H., Kim, D.: L p-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345...
    • 6. Fetecˇau, C., Fetecˇau, C.: The Rayleigh–Stokes problem for heated second grade fluids. Internat. J. Non-Linear Mech. 37(6), 1011–1015...
    • 7. He, J.W., Peng, L.: Approximate controllability for a class of fractional stochastic wave equations. Comput. Math. Appl. 78(5), 1463–1476...
    • 8. Jiang, Y., Ren, J., Wei, Y.: Existence and regularity of solutions for semilinear fractional Rayleigh– Stokes equations. Z. Angew. Math....
    • 9. Kemppainen, J., Siljander, J., Vergara, V., Zacher, R.: Decay estimates for time-fractional and other non-local in time subdiffusion equations...
    • 10. Kubica, A., Ryszewska, K., Zacher, R.: Hölder continuity of weak solutions to evolution equations with distributed order fractional time...
    • 11. Liu, W., Röckner, M., da Silva, J.L.: Strong dissipativity of generalized time-fractional derivatives and quasi-linear (stochastic) partial...
    • 12. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces. SIAM J....
    • 13. Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Internat. J. Control. 73, 144–151 (2000)
    • 14. Mahmudov, N.I., Zorlu, S.: On the approximate controllability of fractional evolution equations with compact analytic semigroup. J. Comput....
    • 15. Nadeem, S., Asghar, S., Hayat, T., Hussian, M.: The Rayleigh Stokes problem for rectangular pipe in Maxwell and second grade fluid. Meccanica...
    • 16. Nguyen, H.T., Nguyen, H.L., Tuan, A.N.: Some well-posed results on the time-fractional RayleighStokes problem with polynomial and gradient...
    • 17. Pedjeu, J.C., Ladde, G.S.: Stochastic fractional differential equations: modeling, method and analysis. Chaos, Solitons Fractals 45, 279–293...
    • 18. Pervaiz, B., Zada, A., Etemad, S., Rezapour, S.: An analysis on the controllability and stability to some fractional delay dynamical systems...
    • 19. Pradeesh, J., Vijayakumar, V.: Approximate controllability for Hilfer fractional stochastic differential systems of order 1<μ<2....
    • 20. Pradeesh, J., Vijayakumar, V.: A New Approach on the approximate controllability results for Hilfer fractional stochastic hemivariational...
    • 21. Prüss, J.: Evolutionary integral equations and applications. In: Monographs in Mathematics. Birkhäuser, Basel (1993)
    • 22. Sakthivel, R., Suganyab, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl....
    • 23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers,...
    • 24. Shen, F., Tan, W., Zhao, Y., Masuoka, T.: The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative...
    • 25. Shukla, A., Patel, R.: Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. 65, 861–875 (2021)
    • 26. Sirbu, M., Tessitore, G.: Null controllability of an infinite dimensional SDE with state and controldependent noise. Syst. Control Lett....
    • 27. Tuan, N.H., Phuong, N.D., Thach, T.N.: New well-posedness results for stochastic delay Rayleigh– Stokes equations. Discrete Contin. Dyn....
    • 28. Tuan, N.H., Tri, V.V., Singh, J., Thach, T.N.: On a fractional Rayleigh–Stokes equation driven by fractional Brownian motion. Math. Methods...
    • 29. Wang, J.N., Zhou, Y., Alsaedi, A., Ahmad, B.: Well-posedness and regularity of fractional Rayleigh– Stokes problem. Z. Angew. Math. Phys....
    • 30. Zhou, Y., Wang, J.N.: The nonlinear Rayleigh–Stokes problems with Riemann–Liouville fractional derivative. Math. Methods Appl. Sci. 44,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno