Ir al contenido

Documat


Coxeter quiver representations in fusion categories and Gabriel’s theorem

  • Edmund Heng [1]
    1. [1] Institut des Hautes Études Scientifiques

      Institut des Hautes Études Scientifiques

      Arrondissement de Palaiseau, Francia

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-42
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00947-1
  • Enlaces
  • Resumen
    • We introduce a notion of representation for a class of generalised quivers known as Coxeter quivers. These representations are built using fusion categories associated to Uq (sl2) at roots of unity and we show that many of the classical results on representations of quivers can be generalised to this setting. Namely, we prove a generalised Gabriel’s theorem for Coxeter quivers that encompasses all Coxeter–Dynkin diagrams—including the non-crystallographic types H and I. Moreover, a similar relation between reflection functors and Coxeter theory is used to show that the indecomposable representations correspond bijectively to the (extended) positive roots of Coxeter root systems over fusion rings.

  • Referencias bibliográficas
    • Bernstein, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28(2), 19–33 (1973). ISSN: 0042-1316.
    • Chen, J.: The Temperley-Lieb categories and skein modules. Preprint online at arXiv:1502.06845 [math.QA] (2014).
    • Coxeter, H.S.M.: The Complete Enumeration of Finite Groups of the Form 𝑅𝑖2=(𝑅𝑖𝑅𝑗)𝑘𝑖𝑗=1R...
    • Crisp, J.: Injective maps between Artin groups. In: Geometric Group Theory Down Under (Canberra, 1996), pp. 119–137. de Gruyter, Berlin (1999).
    • Deodhar, V.V.: On the root system of a Coxeter group. Commun. Algebra 10(6), 611–630 (1982). ISSN: 0092-7872. https://doi.org/10.1080/00927878208822738.
    • Dlab, V., Ringel, C.M.: Indecomposable representations of graphs and algebras. Mem. Am. Math. Soc. 6(173), v+57 (1976). ISSN: 0065-9266....
    • Dlab, V., Ringel, C.M.: On algebras of finite representation type. J. Algebra 33, 306–394 (1975). ISSN: 0021-8693. https://doi.org/10.1016/0021-8693(75)90125-8.
    • Duffield, D.D., Tumarkin, P.: Categorifications of non-integer quivers: types 𝐻 4 , 𝐻 3 H 4 ​ ,H 3 ​ and 𝐼 2 ( 2 𝑛 + 1 ) I...
    • Dyer, M.J.: Embeddings of root systems. I. Root systems over commutative rings. J. Algebra 321(11), 3226–3248 (2009). ISSN: 0021-8693. https://doi.org/10.1016/j.jalgebra.2008.10.008.
    • Edie-Michell, C.: Classifying fusion categories ⊗-generated by an object of small Frobenius-Perron dimension. Sel. Math. (N.S.) 26(2), 47...
    • Etingof, P., Khovanov, M.: Representations of tensor categories and Dynkin diagrams. Int. Math. Res. Not. 5, 235–247 (1995). ISSN: 1073-7928....
    • Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162(2), 581–642 (2005). https://doi.org/10.4007/annals.2005.162.581.
    • Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories. Math. Surv. Monogr. Tensor Categor. (2015). https://doi.org/10.1090/surv/205/04.
    • Gabriel, P.: Unzerlegbare Darstellungen. I. Manuscr. Math. 6, 71–103 (1972). Correction, ibid. 6 (1972), 309. ISSN: 0025-2611. https://doi.org/10.1007/BF01298413.
    • Kirillov Jr., A., Ostrik, V.: On a q-analogue of the McKay correspondence and the ADE classification of 𝑠 𝑙 2 sl 2 ​ conformal...
    • Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110, pp. xii+341. Birkhäuser, Boston (1993). ISBN: 0-8176-3712-5.
    • Lusztig, G.: Some examples of square integrable representations of semisimple p-adic groups. Trans. Am. Math. Soc. 277(2), 623–653 (1983)....
    • Moody, R.V., Patera, J.: Quasicrystals and icosians. J. Phys. A 26(12), 2829–2853 (1993). ISSN: 0305-4470. http://stacks.iop.org/0305-4470/26/2829.
    • Ostrik, V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8(2), 177–206 (2003). ISSN: 1083-4362. https://doi.org/10.1007/s00031-003-0515-6.
    • Ostrik, V.: On symmetric fusion categories in positive characteristic. Sel. Math. (N.S.) 26(3), 19 (2020). ISSN: 1022-1824. https://doi.org/10.1007/s00029-020-00567-5.
    • Rowett, M.: Monoidal Ladder Categories. Honour Thesis. Australian National University (2019).
    • Shcherbak, O.P.: Wave fronts and reflection groups. In: Uspekhi Mat. Nauk 43(3), 125–160 (1988). ISSN: 0042-1316. https://doi.org/10.1070/RM1988v043n03ABEH001741.
    • Steinberg, R.: Lectures on Chevalley groups. University Lecture Series. Notes prepared by John Faulkner and Robert Wilson, Revised and corrected...
    • Tanisaki, T.: Foldings of root systems and Gabriel’s theorem. Tsukuba J. Math. 4(1), 89–97 (1980). ISSN: 0387-4982. https://doi.org/10.21099/tkbjm/1496158795.
    • Turaev, V.G.: Quantum invariants of knots and 3-manifolds. In: De Gruyter Studies in Mathematics, 3rd edn., vol. 18, pp. xii+596 [MR1292673]....
    • Wang, Z.: Topological quantum computation. In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical...
    • Zuber, J.-B.: On Dubrovin topological field theories. Mod. Phys. Lett. A 9(8), 749–760 (1994). ISSN: 0217-7323. https://doi.org/10.1142/S0217732394000563.
    • Snyder, N., Tingley, P.: The half-twist for Uq (g)representation. Algebra Number Theory 3(7), 809–834 (2009). ISSN:1937-0652. https://doi.org/10.2140/ant.2009.3.809

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno