Ir al contenido

Documat


Mutations of noncommutative crepant resolutions in geometric invariant theory

  • Wahei Hara [1] ; Yuki Hirano [2]
    1. [1] University of Tokyo

      University of Tokyo

      Japón

    2. [2] Tokyo University of Agriculture and Technology

      Tokyo University of Agriculture and Technology

      Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-61
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00957-z
  • Enlaces
  • Resumen
    • Let X be a generic quasi-symmetric representation of a connected reductive group G. The GIT quotient stack X = [Xss(ɭ)/G] with respect to a generic ɭ is a (stacky) crepant resolution of the affine quotient X/G, and it is derived equivalent to a noncommutative crepant resolution (=NCCR) of X/G. Halpern-Leistner and Sam showed that the derived category Db(coh X) is equivalent to certain subcategories of Db(coh[X/G]), which are called magic windows. This paper studies equivalences between magic windows that correspond to wall-crossings in a hyperplane arrangement in terms of NCCRs. We show that those equivalences coincide with derived equivalences between NCCRs induced by tilting modules, and that those tilting modules are obtained by certain operations of modules, which is called exchanges of modules. When G is a torus, it turns out that the exchanges are nothing but iterated Iyama–Wemyss mutations. Although we mainly discuss resolutions of affine varieties, our theorems also yield a result for projective Calabi-Yau varieties. Using techniques from the theory of noncommutative matrix factorizations, we show that Iyama–Wemyss mutations induce a group action of the fundamental group π1(P1 \{0, 1,∞}) on the derived category of a Calabi-Yau complete intersection in a weighted projective space.

  • Referencias bibliográficas
    • Ballard, M., Favero, D., Katzarkov, L.: A category of kernels for equivariant factorizations and its implications for Hodge theory. Publ....
    • Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories. J. Reine Angew. Math. 746,...
    • Ballard, M., Deliu, D., Favero, D., Isik, M.U., Katzarkov, L.: Resolutions in factorization categories. Adv. Math. 295, 195–249 (2016)
    • Bergh, D., Lunts, V.A., Schnürer, O.M.: Geometricity for derived categories of algebraic stacks. Sel. Math. 22, 2535–2568 (2016)
    • Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)
    • Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1993)
    • Chen, J.-C.: Flops and equivalences of derived categories for threefolds with only terminal Gorenstein singularities. J. Differ. Geom. 61(2),...
    • Hara, W.: Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops. Adv. Math. 318, 355–410 (2017)
    • Hara, W.: On derived equivalence for Abuaf flop: mutation of non-commutative crepant resolutions and spherical twists. Matematiche 77, 329–371...
    • Halpern-Leistner, D.: The derived category of a GIT quotient. J. Am. Math. Soc. 28(3), 871–912 (2015)
    • Halpern-Leistner, D., Sam, S.V.: Combinatorial constructions of derived equivalences. J. Am. Math. Soc. 33(3), 871–912 (2020)
    • Halpern-Leistner, D., Shipman, I.: Autoequivalences of derived categories via geometric invariant theory. Adv. Math. 303, 1264–1299 (2016)
    • Higashitani, A., Nakajima, Y.: Conic divisorial ideals of Hibi rings and their applications to noncommutative crepant resolutions. Sel. Math....
    • Hirano, Y.: Equivalences of derived factorization categories of gauged Landau-Ginzburg models. Adv. Math. 306, 200–278 (2017)
    • Hirano, Y.: Derived Knörrer periodicity and Orlov’s theorem for gauged Landau-Ginzburg models. Compos. Math. 153(5), 973–1007 (2017)
    • Hirano, Y.: Equivariant tilting modules, Pfaffian varieties and noncommutative matrix factorizations. SIGMA Symmetry Integr. Geom. Methods...
    • Hirano, Y., Wemyss, M.: Faithful actions from hyperplane arrangements. Geom. Topol. 22(6), 3395–3433 (2018)
    • Hirano, Y., Wemyss, M.: Stability conditions for 3-fold flops. Duke Math. J. 172(16), 3105–3173 (2023)
    • Hall, J., Rydh, D.: Perfect complexes on algebraic stacks. Compos. Math. 153(11), 2318–2367 (2017)
    • Isik, M.U.: Equivalence of the derived category of a variety with a singularity category. Int. Math. Res. Not. IMRN 2023, 2787–2808 (2013)
    • Iyama, O., Reiten, I.: Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras. Am. J. Math. 130(4), 1087–1149 (2008)
    • Iyama, O., Wemyss, M.: Maximal modifications and Auslander-Reiten duality for non-isolated singularities. Invent. Math. 197(3), 521–586 (2014)
    • Iyama, O., Wemyss, M.: Tits cones intersections and applications. https://www.maths.gla.ac.uk/~mwemyss/MainFile_for_web.pdf
    • Kawamata, Y.: Flops connect minimal models. Publ. RIMS 44, 419–423 (2008)
    • Koseki, N., Ouchi, G.: Perverse schobers and Orlov equivalences. Eur. J. Math. 9, 32 (2023)
    • Nakajima, Y.: Mutations of splitting maximal modifying modules: the case of reflexive polygons. Int. Math. Res. Not. IMRN 2019, 470–550 (2019)
    • Okonek, C., Teleman, A.: Graded tilting for gauged Landau-Ginzburg models and geometric applications. Pure Appl. Math. Q. 17(1), 185–235 (2021)
    • Positselski, L.: Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence, vol. 212. American Mathematical...
    • Shipman, I.: A geometric approach to Orlov’s theorem. Compos. Math. 148(5), 1365–1389 (2012)
    • Špenko, Š., Van den Bergh, M.: Non-commutative resolutions of quotient singularities for reductive groups. Invent. Math. 210(1), 3–67 (2017)
    • Špenko, Š., Van den Bergh, M.: Non-commutative crepant resolutions for some toric singularities I. Int. Math. Res. Not. IMRN 2020, 8120–8138...
    • Špenko, Š., Van den Bergh, M.: Non-commutative crepant resolutions for some toric singularities II. J. Noncommut. Geom. 14(1), 73–103 (2020)
    • Špenko, Š., Van den Bergh, M.: Tilting bundles on hypertoric varieties. Int. Math. Res. Not. IMRN 2021, 1034–1042 (2021)
    • Špenko, Š., Van den Bergh, M., Bell, J.-P.: On the noncommutative Bondal-Orlov conjecture for some toric varieties. Math. Z. 300, 1055–1068...
    • The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu
    • Teleman, C.: The quantization conjecture revisited. Ann. Math. 152, 1–43 (2000)
    • Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)
    • Van den Bergh, M.: Non-commutative crepant resolutions. In: The Legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)
    • Van den Bergh, M.: Non-commutative crepant resolutions, an overview. arXiv:2207.09703
    • Wemyss, M.: Flops and Clusters in the Homological Minimal Model Program. Invent. Math. 211(2), 435–521 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno