Ir al contenido

Documat


Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras

  • Autores: Osamu Iyama, Idun Reiten
  • Localización: American journal of mathematics, ISSN 0002-9327, Vol. 130, Nº 4, 2008, págs. 1087-1149
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We say that an algebra $\Lambda$ over a commutative noetherian ring $R$ is Calabi-Yau of dimension $d$ ($d$-CY) if the shift functor $[d]$ gives a Serre functor on the bounded derived category of the finite length $\Lambda$-modules. We show that when $R$ is $d$-dimensional local Gorenstein the $d$-CY algebras are exactly the symmetric $R$-orders of global dimension $d$. We give a complete description of all tilting modules of projective dimension at most one for 2-CY algebras, and show that they are in bijection with elements of affine Weyl groups, preserving various natural partial orders. We show that there is a close connection between tilting theory for 3-CY algebras and the Fomin-Zelevinsky mutation of quivers (or matrices). We prove a conjecture of Van den Bergh on derived equivalence of noncommutative crepant resolutions.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno