Ir al contenido

Documat


Colored vertex models and Iwahori Whittaker functions

  • Ben Brubaker [1] ; Valentin Buciumas [2] ; Daniel Bump [3] ; Henrik P. A. Gustafsson [3]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    2. [2] Pohang University of Science and Technology

      Pohang University of Science and Technology

      Corea del Sur

    3. [3] Stanford University

      Stanford University

      Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 4, 2024, págs. 1-58
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00950-6
  • Enlaces
  • Resumen
    • We give a recursive method for computing all values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group G over a nonarchimedean local field F. Structures in the proof have surprising analogies to features of certain solvable lattice models. In the case G = GLr we show that there exist solvable lattice models whose partition functions give precisely all of these values. Here ‘solvable’ means that the models have a family of Yang–Baxter equations which imply, among other things, that their partition functions satisfy the same recursions as those for Iwahori or parahoric Whittaker functions. The R-matrices for these Yang–Baxter equations come from a Drinfeld twist of the quantum group Uq (gl (r|1)), which we then connect to the standard intertwining operators on the unramified principal series. We use our results to connect Iwahori and parahoric Whittaker functions to variations of Macdonald polynomials.

  • Referencias bibliográficas
    • Akutsu, Y., Deguchi, T., Ohtsuki, T.: Invariants of colored links. J. Knot Theory Ramifications 1(2), 161–184 (1992)
    • Baker, T. H., Dunkl, C. F., Forrester, P. J.: Polynomial eigenfunctions of the Calogero-Sutherland-Moser models with exchange terms. In: Calogero-Moser-Sutherland...
    • Baratta, W.: Some properties of Macdonald polynomials with prescribed symmetry. Kyushu J. Math. 64(2), 323–343 (2010)
    • Baxter, R.J.: One-dimensional anisotropic Heisenberg chain. Ann. Phys. 70, 323–337 (1972)
    • Baxter, R.J.: Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1982)
    • Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys....
    • Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate texts in mathematics, vol. 231. Springer, New York (2005)
    • Borodin, A., Petrov, L.: Integrable probability: stochastic vertex models and symmetric functions. In: Stochastic processes and random matrices,...
    • Borodin, A., Wheeler, M.: Colored stochastic vertex models and their spectral theory. Astérisque, (437) +225 (2022)
    • Borodin, A., Wheeler, M.: Nonsymmetric Macdonald polynomials via integrable vertex models. Trans. Amer. Math. Soc. 375(12), 8353–8397 (2022)
    • Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin). Springer, Berlin, (2002). Translated from the 1968...
    • Brubaker, B., Buciumas, V., Bump, D.: A Yang-Baxter equation for metaplectic ice. Commun. Number Theory Phys. 13(1), 101–148 (2019)
    • Brubaker, B., Buciumas, V., Bump, D., Friedberg, S.: Hecke modules from metaplectic ice. Selecta Math. (N.S.) 24(3), 2523–2570 (2018)
    • Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: arXiv:1906.04140v2 (earlier draft of this paper), (2019)
    • Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Metaplectic Iwahori Whittaker functions and supersymmetric lattice models (2020)...
    • Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Vertex operators, solvable lattice models and metaplectic Whittaker functions. Comm....
    • Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Colored five-vertex models and Demazure atoms. J. Combin. Theory Ser. A 178, 105354...
    • Brubaker, B., Buciumas, V., Bump, D., Gustafsson, H.P.A.: Iwahori-metaplectic duality. J. London Math. Soc. 109, e12896 (2024)
    • Brubaker, B., Bump, D., Chinta, G., Friedberg, S., Gunnells, P. E.: Metaplectic ice. In: Multiple Dirichlet series, L-functions and automorphic...
    • Brubaker, B., Bump, D., Friedberg, S.: Schur polynomials and the Yang–Baxter equation. Comm. Math. Phys. 308(2), 281–301 (2011). arXiv:0912.0911
    • Brubaker, B., Bump, D., Friedberg, S.: Matrix coefficients and Iwahori-Hecke algebra modules. Adv. Math. 299, 247–271 (2016)
    • Brubaker, B., Bump, D., Licata, A.: Whittaker functions and Demazure operators. J. Number Theory 146, 41–68 (2015)
    • Bump, D.: Lie groups Volume 225 of Graduate texts in mathematics, 2nd edn. Springer, New York (2013)
    • Bump, D., Naprienko, S.: Colored bosonic models and matrix coefficients. Commun. Number Theory Phys. 18(2), (2024). arXiv:2211.15850
    • Casselman, W.: The unramified principal series of p-adic groups. I. The spherical function. Compositio Math. 40(3), 387–406 (1980)
    • Casselman, W., Shalika, J.: The unramified principal series of p-adic groups. II. The Whittaker function. Compositio Math. 41(2), 207–231...
    • Chari, V., Pressley, A.: A guide to quantum groups. Cambridge University Press, Cambridge (1994)
    • Cherednik, I.: Intertwining operators of double affine Hecke algebras. Selecta Math. (N.S.) 3(4), 459–495 (1997)
    • Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Comm. Math. Phys. 343(2), 651–700 (2016)
    • Costello, K.: Integrable lattice models from four-dimensional field theories. In: String-Math 2013, volume 88 of Proceeding of Symposium Pure...
    • Drinfeld, V. G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pp....
    • Fomin, S., Kirillov, A.N.: The Yang–Baxter equation, symmetric functions, and Schubert polynomials. In: Proceedings of the 5th Conference...
    • Gray, N. T.: Metaplectic Ice for Cartan Type C. ProQuest LLC, Ann Arbor, MI, (2017), arXiv:1709.04971. Thesis (Ph.D.)–University of Minnesota
    • Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Amer. Math. Soc. 18(3), 735–761 (2005)
    • Hamel, A.M., King, R.C.: Bijective proofs of shifted tableau and alternating sign matrix identities. J. Algebraic Combin. 25(4), 417–458 (2007)
    • Ivanov, D.: Symplectic ice. In: Multiple Dirichlet series, L-functions and automorphic forms, volume 300 of Progr. Math. Springer, New York,...
    • Jimbo, M.: A q-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 10(1), 63–69 (1985)
    • Jimbo, M.: A q-analogue of U(gl(N + 1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11(3), 247–252 (1986)
    • Jimbo, M., Miwa, T.: Algebraic analysis of solvable lattice models, volume 85 of CBMS Regional Conference Series in Mathematics. Published...
    • Jones, V. F. R.: Baxterization. In: Differential geometric methods in theoretical physics (Davis, CA, 1988), volume 245 of NATO Adv. Sci....
    • Kim, J.-L.: A generalized Casselman-Shalika formula on GL_N. In: Advances in the theory of automorphic forms and their L-functions, volume...
    • Knop, F.: Integrality of two-variable Kostka functions. J. Reine Angew. Math. 482, 177–189 (1997)
    • Knutson, A., Zinn-Justin, P.: Schubert puzzles and integrability I: invariant trilinear forms (2017) arXiv:1706.10019
    • Kojima, T.: Diagonalization of transfer matrix of supersymmetry 𝑈𝑞(𝑠𝑙(𝑀+1∣𝑁+1))U q(sl(M+1∣N+1))...
    • Korff, C.: Cylindric versions of specialized Macdonald functions and a deformed Verlinde algebra. Comm. Math. Phys. 318(1), 173–246 (2013)
    • Kulish, P.P., Reshetikhin, N.Y., Sklyanin, E.K.: Yang-Baxter equations and representation theory. I. Lett. Math. Phys. 5(5), 393–403 (1981)
    • Kuperberg, G.: Another proof of the alternating-sign matrix conjecture. Internat. Math. Res. Notices 3, 139–150 (1996)
    • Lansky, J.M.: Parahoric fixed spaces in unramified principal series representations. Pacific J. Math. 204(2), 433–443 (2002)
    • Lascoux, A., Leclerc, B., Thibon, J.-Y.: Flag varieties and the Yang-Baxter equation. Lett. Math. Phys. 40(1), 75–90 (1997)
    • Li, J.-S.: Some results on the unramified principal series of p-adic groups. Math. Ann. 292(4), 747–761 (1992)
    • Lusztig, G.: Equivariant K-theory and representations of Hecke algebras. Proc. Amer. Math. Soc. 94(2), 337–342 (1985)
    • Macdonald, I.: Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New...
    • Marshall, D.: Macdonald polynomials. Masters Thesis, University of Melbourne (1999)
    • Mihalcea, L.C., Su, C.: Whittaker functions from motivic Chern classes. Transform. Groups 27(3), 1045–1067 (2022). (With an appendix by Mihalcea,...
    • Poulain d'Andecy, L.: Fusion formulas and fusion procedure for the Yang-Baxter equation. Algebr. Represent. Theory 20(6), 1379–1414 (2017)
    • Reeder, M.: p-adic Whittaker functions and vector bundles on flag manifolds. Compositio Math. 85(1), 9–36 (1993)
    • Reshetikhin, N.Y., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Comm. Math. Phys. 127(1), 1–26 (1990)
    • Rodier, F.: Whittaker models for admissible representations of reductive p-adic split groups. In: Harmonic analysis on homogeneous spaces...
    • Sahi, S.: Interpolation, integrality, and a generalization of Macdonald’s polynomials. Internat. Math. Res. Notices 10, 457–471 (1996)
    • Sahi, S., Stokman, J.V., Venkateswaran, V.: Metaplectic representations of Hecke algebras, Weyl group actions, and associated polynomials....
    • Shintani, T.: On an explicit formula for class-1 “Whittaker functions” on 𝐺𝐿𝑛GL n ​over p-adic fields. Proc. Japan...
    • Stanley, R.P.: On the number of reduced decompositions of elements of Coxeter groups. European J. Combin. 5(4), 359–372 (1984)
    • Tokuyama, T.: A generating function of strict Gelfand patterns and some formulas on characters of general linear groups. J. Math. Soc. Japan...
    • Tsilevich, N.V.: The quantum inverse scattering problem method for the q-boson model, and symmetric functions. Funktsional. Anal. i Prilozhen....
    • Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed Bosons. Adv. Math....
    • Wheeler, M., Zinn-Justin, P.: Littlewood-Richardson coefficients for Grothendieck polynomials from integrability. J. Reine Angew. Math. 757,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno