Ir al contenido

Documat


Hecke modules from metaplectic ice

  • Ben Brubaker [1] ; Valentin Buciumas [2] ; Daniel Bump [3] ; Solomon Friedberg [4]
    1. [1] University of Minnesota

      University of Minnesota

      City of Minneapolis, Estados Unidos

    2. [2] Hebrew University of Jerusalem

      Hebrew University of Jerusalem

      Israel

    3. [3] Stanford University

      Stanford University

      Estados Unidos

    4. [4] Boston College

      Boston College

      City of Boston, Estados Unidos

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 24, Nº. 3, 2018, págs. 2523-2570
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We present a new framework for a broad class of affine Hecke algebra modules, and show that such modules arise in a number of settings involving representations of p-adic groups and R-matrices for quantum groups. Instances of such modules arise from (possibly non-unique) functionals on p-adic groups and their metaplectic covers, such as the Whittaker functionals. As a byproduct, we obtain new, algebraic proofs of a number of results concerning metaplectic Whittaker functions. These are thus expressed in terms of metaplectic versions of Demazure operators, which are built out of R-matrices of quantum groups depending on the cover degree and associated root system.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno