Ir al contenido

Documat


The isomorphism problem for cominuscule Schubert varieties

  • Edward Richmond [1] ; Mihail Tarigradschi [2] ; Weihong Xu [3]
    1. [1] Oklahoma State University

      Oklahoma State University

      Estados Unidos

    2. [2] Rutgers University

      Rutgers University

      City of New Brunswick, Estados Unidos

    3. [3] Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-17
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00927-5
  • Enlaces
  • Resumen
    • Cominuscule flag varieties generalize Grassmannians to other Lie types. Schubert varieties in cominuscule flag varieties are indexed by posets of roots labeled long/short.

      These labeled posets generalize Young diagrams. We prove that Schubert varieties in potentially different cominuscule flag varieties are isomorphic as varieties if and only if their corresponding labeled posets are isomorphic, generalizing the classification of Grassmannian Schubert varieties using Young diagrams by the last two authors. Our proof is type-independent.

  • Referencias bibliográficas
    • Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties....
    • Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: Positivity of minuscule quantum K-theory (2022). arXiv:2205.08630 [math].
    • Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Mathematische Zeitschrift 231(2), 301–324 (1999).
    • Brion, M.: Lectures on the Geometry of Flag Varieties, Topics in Cohomological Studies of Algebraic Varieties, pp. 33–85 (2005).
    • Buch, A.S., Samuel, M.J.: K-theory of minuscule varieties. J. für die reine und angewandte Mathematik Crelles J. 719, 133–171 (2016).
    • Develin, M., Martin, J.L., Reiner, V.: Classification of Ding’s Schubert varieties: finer rook equivalence. Can. J. Math. 59(1), 36–62 (2007).
    • Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebr. Geom. 4(1), 181–193 (1995).
    • Fulton, W.: Intersection Theory. Springer, New York (1998).
    • Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebr. Geom. 13(4), 641–661 (2004).
    • Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody gènérales. Astérisque 159–160, 267 (1988).
    • Perrin, N.: The Gorenstein locus of minuscule Schubert varieties. Adv. Math. 220(2), 505–522 (2009).
    • Robert, A.: Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Combin. 5(4), 331–350 (1984).
    • Richmond, E., Slofstra, W.: Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties. Mathematische Annalen 366(1–2),...
    • Richmond, E., Slofstra, W.: The isomorphism problem for Schubert varieties, arXiv, (2022). arXiv:2103.08114 [math].
    • Richmond, E., Slofstra, W., Woo, A.: The Nash blow-up of a cominuscule Schubert variety. J. Algebra 559, 580–600 (2020).
    • Tarigradschi, M., Weihong, X.: The isomorphism problem for Grassmannian Schubert varieties. J. Algebra 633, 225–241 (2023).
    • Thomas, H., Yong, A.: A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2), 596–620 (2009).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno