Ir al contenido

Documat


A general Chevalley formula for semi-infinite flag manifolds and quantum K-theory

  • Cristian Lenart [1] ; Satoshi Naito [2] ; Daisuke Sagaki [3]
    1. [1] State University of New York

      State University of New York

      City of Albany, Estados Unidos

    2. [2] Tokyo Institute of Technology

      Tokyo Institute of Technology

      Japón

    3. [3] University of Tsukuba

      University of Tsukuba

      Japón

  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 3, 2024, págs. 1-44
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00924-8
  • Enlaces
  • Resumen
    • We give a Chevalley formula for an arbitrary weight for the torus-equivariant Kgroup of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for an anti-dominant fundamental weight for the (small) torus-equivariant quantum K-theory QKT (G/B) of a (finite-dimensional) flag manifold G/B; this has been a longstanding conjecture about the multiplicative structure of QKT (G/B). In type An−1, we prove that the so-called quantum Grothendieck polynomials indeed represent (opposite) Schubert classes in the (non-equivariant) quantum K-theory QK(SLn/B); we also obtain very explicit information about the coefficients in the respective Chevalley formula.

  • Referencias bibliográficas
    • Anderson, D., Chen, L., Tseng, H.-H.: On the finiteness of quantum K-theory of a homogeneous space. Int. Math. Res. Not. 2022(2), 1313–1349...
    • Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Series in Mathematics. Westview Press, Oxford (1969).
    • Björner, A., Brenti, F.: Combinatorics of Coxeter groups. Graduate Texts in Mathematics Vol. 231. Springer, New York (2005).
    • Brenti, F., Fomin, S., Postnikov, A.: Mixed Bruhat operators and Yang–Baxter equations for Weyl groups. Int. Math. Res. Not. 8, 419–441 (1999).
    • Buch, A., Chaput, P.-E., Mihalcea, L., Perrin, N.: A Chevalley formula for the equivariant quantum K-theory of cominuscule varieties. Algebraic...
    • Buch, A., Chung, S., Li, C., Mihalcea, L.: Euler characteristics in the quantum K-theory of flag varieties. Selecta Math. (N.S.), 26 No. 29...
    • Deodhar, V.: A splitting criterion for the Bruhat orderings on Coxeter groups. Commun. Algebra 15, 1889–1894 (1987).
    • Dyer, M.J.: Hecke algebras and shellings of Bruhat intervals. Compositio Math. 89, 91–115 (1993).
    • Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics Vol. 150. Springer, New York (1995).
    • Fomin, S., Gelfand, S., Postnikov, A.: Quantum Schubert polynomials. J. Am. Math. Soc. 10, 565–596 (1997).
    • Finkelberg, M., Mirkovic, I.: Semi-infinite flags. I: Case of global P1. Differential Topology, Infinite-Dimensional Lie Algebras, and Applications,...
    • Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebraic Geom. 13, 641–661 (2004).
    • Gaussent, S., Littelmann, P.: LS-galleries, the path model and MV-cycles. Duke Math. J. 127, 35–88 (2005).
    • Gu, W., Mihalcea, L.C., Sharpe, E., Zou, H.: Quantum K-theory of Grassmannians, Wilson operators, and Schur bundles (2022). arXiv:2208.01091.
    • Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990).
    • Kato, S.: Loop structure on equivariant K-theory of semi-infinite flag manifolds (2018). arXiv:1805.01718.
    • Kato, S.: Frobenius splitting of Schubert varieties of semi-infinite flag manifolds. Forum Math. Pi, 9 No. e5 (2021).
    • Kato, S.: On quantum K-group of partial flag manifolds (2019). arXiv:1906.09343.
    • Kato, S.: The formal model of semi-infinite flag manifolds. ICM - International Congress of Mathematicians. Vol. III. Sections 1–4, 1600–1623....
    • Kato, S., Naito, S., Sagaki, D.: Equivariant K-theory of semi-infinite flag manifolds and the Pieri–Chevalley formula. Duke Math. J. 169,...
    • Kouno, T., Lenart, C., Naito, S.: New structure on the quantum alcove model with applications to representation theory and Schubert calculus....
    • Kouno, T., Lenart, C., Naito, S.: Generalized quantum Yang-Baxter moves and their application to Schubert calculus (extended abstract). 34th...
    • Kouno, T., Lenart, C., Naito, S., Sagaki, D.: Quantum K-theory Chevalley formulas in the parabolic case. J. Algebra 645, 1–53 (2024).
    • Kouno, T., Naito, S., Orr, D., Sagaki, D.: Inverse K-Chevalley formulas for semi-infinite flag manifolds, I: minuscule weights in ADE type....
    • Kouno, T., Naito, S., Sagaki, D.: Chevalley formula for anti-dominant minuscule fundamental weights in the equivariant quantum K-group of...
    • Lee, Y.-P.: Quantum K-theory I: Foundations. Duke Math. J. 121, 389–424 (2004).
    • Lenart, C.: From Macdonald polynomials to a charge statistic beyond type A. J. Combin. Theory Ser. A 119, 683–712 (2012).
    • Lenart, C., Lubovsky, A.: A generalization of the alcove model and its applications. J. Algebraic Combin. 41, 751–783 (2015).
    • Lenart, C., Lubovsky, A.: A uniform realization of the combinatorial R-matrix. Adv. Math. 334, 151–183 (2018).
    • Lenart, C., Maeno, T.: Quantum Grothendieck Polynomials (2006). arXiv .CO/0608232.
    • Lenart, C., Naito, S., Orr, D., Sagaki, D.: Inverse K-Chevalley formulas for semi-infinite flag manifolds, II: arbitrary weights in ADE type....
    • Lenart, C., Naito, S., Sagaki, D.: A combinatorial Chevalley formula for semi-infinite flag manifolds and its applications (extended abstract)....
    • Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic...
    • Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals II: Path models and P =...
    • Lenart, C., Naito, S., Sagaki, D., Schilling, A., Shimozono, M.: A uniform model for Kirillov-Reshetikhin crystals III: Nonsymmetric Macdonald...
    • Lenart, C., Postnikov, A.: Affine Weyl groups in K-theory and representation theory. Int. Math. Res. Not., 2007, no. 12: Art. ID rnm038 (2007).
    • Lenart, C., Postnikov, A.: A combinatorial model for crystals of Kac–Moody algebras. Trans. Am. Math. Soc. 360, 4349–4381 (2008).
    • Lenart, C., Schultze, A.: On combinatorial models for affine crystals. Sém. Lothar. Combin., 85B . 20 (2021).
    • Lenart, C., Shimozono, M.: Equivariant K-Chevalley rules for Kac–Moody flag manifolds. Am. J. Math. 136, 1175–1213 (2014).
    • Maeno, T., Naito, S., Sagaki, D.: A presentation of the torus-equivariant quantum K-theory ring of flag manifolds of type A, I: the defining...
    • Naito, S., Orr, D., Sagaki, D.: Pieri-Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds....
    • Naito, S., Sagaki, D.: Pieri-type multiplication formula for quantum Grothendieck polynomials (2022). arXiv:2211.01578.
    • Orr, D.: Equivariant K-theory of the semi-infinite flag manifold as a nil-DAHA module. Selecta Math. (N.S.), 29 No. 45 (2023).
    • Postnikov, A.: Quantum Bruhat graph and Schubert polynomials. Proc. Am. Math. Soc. 133, 699–709 (2005).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno