Ir al contenido

Documat


Spectrum of p-adic linear differential equations I: the shape of the spectrum

  • Tinhinane A. Azzouz [1]
    1. [1] Yau Mathematical Sciences Center, Tsinghua University, Beijing, China Beijing Institute of Mathematical Sciences and Applications, Beijing, China
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 1, 2024, 66 págs.
  • Idioma: inglés
  • DOI: 10.1007/s00029-023-00904-4
  • Enlaces
  • Resumen
    • This paper extends our previous works Azzouz (Math Z 296(3–4): 1613–1644, 2020;

      Number Theory 231:139–157, 2022) on determining the spectrum, in the Berkovich sense, of ultrametric linear differential equations. Our previous works focused on equations with constant coefficients or over a field of formal power series. In this paper, we investigate the spectrum of p-adic differential equations at a generic point on a quasi-smooth curve. This analysis allows us to establish a significant connection between the spectrum and the spectral radii of convergence of a differential equation when considering the affine line. Furthermore, the spectrum offers a more detailed decomposition compared to Robba’s decomposition based on spectral radii Robba (Ann Math 101(2):280–316, 1975).

  • Referencias bibliográficas
    • Azzouz, T.A.: Spectrum of a linear differential equation with constant coefficients. Math. Z. 296(3–4), 1613–1644 (2020). https://doi.org/10.1007/s00209-020-02482-z....
    • Azzouz, T.A.: Spectrum of a linear differential equation over a field of formal power series. J. Number Theory 231, 139–157 (2022). https://doi.org/10.1016/j.jnt.2020.11.021....
    • Azzouz, T.A.: Spectrum of p-adic linear differential equations II: Variation of the spectrum. (2023). arXiv:2303.06014 [math.NT]
    • Berkovich, V.G.: Spectral Theory and Analytic Geometry Over non-Archimedean Fields. AMS Mathematical Surveys and Monographs 33. AMS (1990)
    • Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. In: Publ. Math., Inst. Hautes Étud. Sci. 78, 5–161 (1993). ISSN: 0073-8301;...
    • Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry. Grundlehren der mathematischen...
    • Bourbaki, N.: Théories spectrales: Chapitres 1 et 2. Bourbaki, Nicolas. Springer, Berlin Heidelberg (2007) ISBN: 9783540353317
    • Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line. Providence, RI: American Mathematical Society (AMS),...
    • Christol, G., Dwork, B.: Modules différentiels sur les couronnes (Differential modules over annuli). In: Ann. Inst. Fourier 44(3), 663–701...
    • Christol, G.: Modules différentiels et équations différentielles p-adiques. In: Queen’s Papers in Pure and Applied Math (1983)
    • Christol, G., Mebkhout, Z.: Équations différentielles p-adiques et coefficients p-adiques sur les courbes. In: Cohomologies p-adiques et applications...
    • Ducros, A.: La structure des courbes analytiques. https://webusers.imj-prg.fr/~antoine.ducros/trirss
    • Dwork, B.: On p-adic differential equations. II: The p-adic asymptotic behavior of solutions of ordinary linear differential equations with...
    • Kedlaya, K.S.: p-adic differential equations. Cambridge University Press, Cambridge, pp. xvii + 380 (2010). ISBN: 978-0-521-76879-5/hbk
    • Poineau, J.: Les espaces de Berkovich sont angéliques. In: Bull. soc. Math. France (2013)
    • Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation III: global decomposition and controlling graphs....
    • Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation IV: local and global index theorems. arXiv e-prints...
    • Poineau, J., Pulita, A.: The convergence Newton polygon of a p-adic differential equation. II: Continuity and finiteness on Berkovich curves....
    • Pulita, A.: The convergence Newton polygon of a p-adic differential equation. I: Affinoid domains of the Berkovich affine line. Acta Math....
    • Robba, P.: On the Index of p-adic Differential Operators I. In: Annals of Mathematics 101(2), 280–316 (1975). ISSN: 0003486X. http://www.jstor.org/stable/1970992
    • Young, P.T.: Radii of convergence and index for p-adic differential operators. Trans. Am. Math. Soc. 333(2), 769–785 (1992). https://doi.org/10.2307/2154061....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno