Ir al contenido

Documat


Chaotic Dynamics of Conformable Maturity-Structured Cell Population Models

  • Manal Menchih [2] ; Khalid Hilal [2] ; Ahmed Kajouni [2] ; Mohammad Esmael Samei [1]
    1. [1] Bu-Ali Sina University

      Bu-Ali Sina University

      Irán

    2. [2] Sultan Moulay Slimane University,
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01132-7
  • Enlaces
  • Resumen
    • The primary aim of this study is to analyze the chaotic dynamics of a conformable maturity structured cell partial differential equation of order z ∈ (0, 1), which extends the classical Lasota equation. To examine the chaotic behavior of our model’s solution, we initially extend certain criteria of linear chaos to conformable calculus. This extension is crucial because the solution of our model does not generate a classical semigroup but rather a c0-z-semigroup. For the velocity term of our model, B(w) = μw, where μ ∈ C, and the term source g(w, ϑ(r,w)), we utilize spectral properties of the z-infinitesimal generator to demonstrate chaotic behavior in the space C(J0,C), J0 := [0,+∞). Furthermore, by employing conformable admissible weight functions and setting B(w) = 1, we establish chaos in the solution z-semigroup, this time within the space C0(J0,C).

  • Referencias bibliográficas
    • 1. Ditto, W.L.: Applications of chaos in biology and Medicin. AIP Conf. Proc. Am. Inst. Phys. 376, 175–201 (1996). https://doi.org/10.1063/1.51060
    • 2. Kundu, S., Alzabut, J., Samei, M.E., Khan, H.: Habitat complexity of a predator–prey model with Hassell–Varley type functional response....
    • 3. Baishya, C., Premakumari, R.N., Samei, M.E., Krishna Naik, M.: Chaos control of fractional order nonlinear Bloch equation by utilizing...
    • 4. Amdouni, M., Alzabut, J., Samei, M.E., Sudsutad, W., Thaiprayoon, C.: A generalized approach of the Gilpin–Ayala model with fractional...
    • 5. Alzabut, J., Grace, S.R., Santra, S.S., Samei, M.E.: Oscillation of even-order nonlinear dynamic equations with sublinear and superlinear...
    • 6. Kherraz, T., Benbachir, M., Lakrib, M., Samei, M.E., Kaabar, M.K.A., Bhanotar, S.A.: Existence and uniqueness results for fractional boundary...
    • 7. Rezapour, S., Mohammadi, H., Samei, M.E.: SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. Adv....
    • 8. Zhou, H., Alzabut, J., Rezapour, S., Samei, M.E.: Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy...
    • 9. Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819...
    • 10. Brze´zniak, Z., Dawidowicz, A.L.: On periodic solutions to the von Foerster–Lasota equation. Semigroup Forum 78, 118–137 (2009). https://doi.org/10.1007/s00233-008-9120-2
    • 11. Iqbal, S., Martínez González, F., Kaabar, M.K.A., Samei, M.E.: A novel Elzaki transform homotopy perturbation method for solving time-fractional...
    • 12. Amiri, P., Samei, M.E.: Existence of Urysohn and Atangana–Baleanu fractional integral inclusion systems solutions via common fixed point...
    • 13. Belhadji, B., Alzabut, J., Samei, M.E., Fatima, N.: On the global behaviour of solutions for a delayed viscoelastic type petrovesky wave...
    • 14. Premakumari, R.N., Baishya, C., Samei, M.E., Krishna Naik,M.: A novel optimal control strategy for nutrient-phytoplankton-zooplankton...
    • 15. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)....
    • 16. Al Horani,M., Hammad, M.A., Khalil, R.:Variation of parameters for local fractional nonhomogenous linear differential equations. J. Math....
    • 17. Mohammadaliee, B.,Roomi,V., Samei, M.E.:SEIQRmodel for analyzing COVID-19with vaccination via conformable fractional derivative and numerical...
    • 18. Hilal, K., Menchih, M., Kajouni, A.: Existence and uniqueness of solutions for a second-order iterative fractional conformable boundary...
    • 19. Abdeljawad, T., Samei, M.E.: Applying quantum calculus for the existence of solution of q-integrodifferential equations with three criteria....
    • 20. Zhou, H.W., Yang, S., Zhang, S.Q.: Conformable derivative approach to anomalous diffusion. Phys. A Stat. Mech. Appl. 491, 1000–1013 (2018)....
    • 21. Atangana, A., Khan,M.A.: Validity of fractal derivative to capturing chaotic attractors. Chaos Solitons Fractals 126, 50–59 (2019). https://doi.org/10.1016/j.chaos.2019.06.002
    • 22. Chaudhary,M., Kumar, R., Singh, M.K.: Fractional convection-dispersion equation with conformable derivative approach. Chaos Solitons Fractals...
    • 23. Has, A., Yilmaz, B., Baleanu, D.: On the geometric and physical properties of conformable derivative. Math. Sci. Appl. E-Notes 12(2),...
    • 24. Zhu, P., Yang, Q.: Applying quantum calculus for the existence of solution of q-integro-differential equations with three criteria. Discrete...
    • 25. Abdeljawad, T., AL Horani, M., Khalil, R.: Conformable fractional semigroups of operators. J. Semigroup Theory Appl. 2015 (2015)
    • 26. Chang, Y.H., Hong, C.H.: The chaos of the solution semigroup for the quasi-linear Lasota equation. Taiwan. J. Math. 16(5), 1707–1717 (2012)....
    • 27. Matsui, M., Takeo, F.: Chaotic semigroups generated by certain differential operators of order 1. SUT J. Math. 37, 51–67 (2001). https://doi.org/10.55937/sut/1017153968
    • 28. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015). https://doi.org/10.1515/math-2015-0081
    • 29. Grosse-Erdmann, K.G., Manguillot, A.P.: Linear Chaos. Springer, London (2011)
    • 30. Bernal-González, L.: On hypercyclic operators on Banach spaces. Proc. Am.Math. Soc. 127(4), 1003– 1010 (1999). https://doi.org/10.1090/S0002-9939-99-04657-2
    • 31. Bonet, J., Peris, A.: Hypercyclic operators on non-normable fréchet spaces. J. Funct. Anal. 159(2), 587–595 (1998). https://doi.org/10.1006/jfan.1998.3315
    • 32. Conejero, J.A., Lizama, C., Murillo-Arcila, M., Peris, A.: Linear dynamics of semigroups generated by differential operators. Open Math....
    • 33. Mackey,M.C.: Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood 51(5), 941–956 (1978)
    • 34. Barrachina, X., Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Distributional chaos for the forward and backward control...
    • 35. Banasiak, J., Moszy´nski,M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete Contin. Dyn. Syst....
    • 36. Herzog, G.: On a universality of the heat equation. Math. Nachr. 188(1), 169–171 (1997). https://doi. org/10.1002/mana.19971880110
    • 37. Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifurc....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno