Ir al contenido

Documat


Oscillation Criteria for Even-Order Nonlinear Dynamic Equations with Sublinear and Superlinear Neutral Terms on Time Scales

  • Jehad Alzabut [1] ; Said R. Grace [2] ; Shyam Sundar Santra [4] ; Mohammad Esmael Samei [3]
    1. [1] Prince Sultan University

      Prince Sultan University

      Arabia Saudí

    2. [2] Cairo University

      Cairo University

      Egipto

    3. [3] Bu-Ali Sina University

      Bu-Ali Sina University

      Irán

    4. [4] JIS College of Engineering
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The symmetrical properties of dynamic and/or differential equations are kind of oscillation properties that allow us to conclude the character of solutions for dynamic equations. In this paper, we obtain some symmetrical properties of solutions to an even-order nonlinear dynamic equations with superlinear and sublinear neutral terms on time scales. Our approach is based on linearizing the considered equation in the sense that we would deduce the properties of the considered equation from that of the linear form and provide new oscillation results via comparing with first order as well as order non-neutral delay dynamic inequalities. The new obtained results outfit a general podium that enables to analyse the oscillatory behaviour for many types of even-order nonlinear dynamic equations. An example is provided to demonstrate the validity of the theoretical outcomes.

  • Referencias bibliográficas
    • Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation of certain fourth-order functional differential equations. Ukr. Math. J. 59, 315–342...
    • Hajiseyedazizi, S.N., Samei, M.E., Alzabut, J., Chu, Y.: On multi-step methods for singular fractional -integro-differential equations. Open...
    • Erbe, L.H., Karpuz, B., Peterson, A.C.: Kamenev-type oscillation criteria for higher-order neutral delay dynamic equations. Int. J. Differ....
    • Grace, S.R., Graef, J.R., El-Beltagy, M.A.: On the oscillation of third order neutral delay dynamic equations on time scales. Comput. Math....
    • Grace, S.R., Jadlovská, I.: Oscillatory behavior of odd-order nonlinear differential equations with a nonpositive neutral term. Dyn. Syst....
    • Graef, J.R., Grace, S.R., Tunç, E.: Oscillation criteria for even-order differential equations with unbounded neutral coefficients and distributed...
    • Yue, X.G., Samei, M.E., Fathipour, A., Kaabar, M.K.A., Kashuri, A.: Using Krasnoselskii’s theorem to investigate the Cauchy and neutral fractional...
    • Li, T., Rogovchenko, Y.V.: Oscillation criteria for even-order neutral differential equations. Appl. Math. Lett. 61, 35–41 (2016)
    • Zafer, A.: Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 11(3), 21–25 (1998). https://doi.org/10.1016/S0893-9659(98)00028-7
    • Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic Publishers,...
    • Grace, S.R., Agarwal, R.P., Wang, C.: New oscillation results for non-canonical higher order nonlinear neutral dynamic equations. Boletín...
    • Grace, S.R., Alzabut, J., Abodayeh, K.: Oscillation theorems for higher order dynamic equations with superlinear neutral term. AIMS Math....
    • Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Oscillation of second-order differential equations with a sublinear neutral term. Carpathian...
    • Grace, S.R., Graef, J.R., Jadlovská, I.: Oscillation criteria for second-order half-linear delay differential equations with mixed neutral...
    • Graef, J.R., Grace, S.R., Jadlovská, I., Tunç, E.: Some new oscillation results for higher-order nonlinear differential equations with a nonlinear...
    • Graef, J.R., Grace, S.R., Tunç, E.: Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term. Opusc....
    • Liu, Q., Grace, S.R., Jadlovskà, I., Tunc, E., Li, T.: On the asymptotic behavior of noncanonical third-order Emden-fowler delay differential...
    • Alzabut, J., Grace, S.R., Chhatria, G.N.: New oscillation results for higher order nonlinear differential equations with a nonlinear neutral...
    • Džurina, J., Grace, S.R., Jadlovskà, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear...
    • Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order....
    • TunÇ, C.: Convergence of solutions of nonlinear neutral differential equations with multiple delays. Boletín de la Sociedad Matemática Mexicana...
    • Saker, S.H., Tunç, C., Mahmoud, R.R.: New Carlson-Bellman and Hardy-Littlewood dynamic inequalities. Math. Inequal. Appl. 21(4), 967–983 (2018)....
    • Moaaz, O., Chatzarakis, G.E., Abdeljawad, T., Cesarano, C., Nabih, A.: Amended oscillation criteria for second-order neutral differential...
    • Hassan, T.S., Cesarano, C., El-Nabulsi, R.A., Anukool, W.: Improved Hille-type oscillation criteria for second-order quasilinear dynamic equations....
    • Nabih, A., Cesarano, C., Moaaz, O., Anis, M., Elabbasy, E.M.: Non-canonical functional differential equation of fourth-order: new monotonic...
    • El-Deeb, A.A., Rashid, S.: On some new double dynamic inequalities associated with Leibniz integral rule on time scales. Adv. Differ. Equ....
    • El-Deeb, A.A., Elsennary, H.A., Baleanu, D.: Some new Hardy-type inequalities on time scales. Adv. Differ. Equ. 2020, 441 (2020). https://doi.org/10.1186/s13662-020-02883-8
    • El-Deeb, A.A., Xu, E., Abdeldaim, A., Wang, G.: Some dynamic inequalities on time scales and their applications. Adv. Differ. Equ. 2019, 130...
    • Zeeshan, Ahammad, N.A., Rasheed, H.U., El-Deeb, A.A., Almarri, B., Shah, N.A.: A numerical intuition of activation energy in transient micropolar...
    • El-Deeb, A.A., El-Sennary, H.A., Khan, Z.A.: Some reverse inequalities of Hardy type on time scales. Adv. Differ. Equ. 2020, 402 (2020). https://doi.org/10.1186/s13662-020-02857-w
    • El-Deeb, A.A., Makharesh, S.D., Baleanu, D.: Dynamic Hilbert-type inequalities with Fenchel–Legendre transform. Adv. Differ. Equ. 12(4), 582...
    • Mohamed Hassan, A., Ramos, H., Moaaz, O.: Second-order dynamic equations with noncanonical operator: oscillatory behavior. Fractal Fract....
    • Alzabut, J., Grace, S.R., Jonnalagadda, J.M., Santra, S.S., Abdalla, B.: Higher-order Nabla difference equations of arbitrary order with forcing,...
    • Santra, S.S., Priyadharshini, S., Sadhasivam, V., Kavitha, J., Fernandez-Gamiz, U., Noeiaghdam, S., Khedher, K.M.: On the oscillation of certain...
    • Asad, J., Mallick, P., Samei, M.E., Rath, B., Mohapatra, P., Shanak, H., Jarrar, R.: Asymmetric variation of a finite mass harmonic like oscillator....
    • Sangeetha, S., Thamilvanan, S.K., Santra, S.S., Noeiaghdam, S., Abdollahzadeh, M.: Property a of third-order noncanonical functional differential...
    • Masood, F., Moaaz, O., Santra, S.S., Fernandez Gamiz, U., Elabbasy, E.M.: Oscillation theorems for fourth-order quasi-linear delay differential...
    • Thabet, S.T.M., Vivas-Cortez, M., Kedim, I., Samei, M.E., Iadh Ayari, M.: Solvability of Hilfer fractional snap dynamic system on unbounded...
    • Santra, S.S., Mondal, P., Samei, M.E., Alotaibi, H., Altanji, M., Botmart, T.: Study on the oscillation of solution to second-order impulsive...
    • Moaaz, O., Muhib, A., Abdeljawad, T., Santra, S.S., Anis, M.: Asymptotic behavior of even-order noncanonical neutral differential equations....
    • Altanji, M., Chhatria, G.N., Santra, S.S., Scapellato, A.: Oscillation criteria for sublinear and superlinear first-order difference equations...
    • Palanisamy, A., Alzabut, J., Muthulakshmi, V., Santra, S.S., Nonlaopon, K.: Oscillation results for a fractional partial differential system...
    • Hammad, H.A., Rashwan, R.A., Nafea, A., Samei, M.E., De la Sen, M.: Stability and existence of solutions for a tripled problem of fractional...
    • Alzabut, J., Grace, S.R., Santra, S.S., Chhatria, G.N.: Asymptotic and oscillatory behaviour of third order non-linear differential equations...
    • Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2010)
    • Chhatria, G.N., Grace, S.R., Graef, J.R.: Oscillation of nonlinear neutral dynamic equations on time scales. J Egypt. Math. Soc. 29, 308 (2021)
    • Agarwal, R.P., Bohner, M.: Basic calculus on time scales and some of its applications. Results Math. 35, 3–22 (1999)
    • Hardy, G.H., Littlewood, I.E., Polya, G.: Inequalities, Reprint of the 52 Cambridge University Press, Cambridge (1988)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno