Ir al contenido

Documat


Periodic and Quasiperiodic Solutions of a Forced Discontinuous Oscillator

  • Denghui Li [3] ; Xiaoming Zhang [1] ; Biliu Zhou [2]
    1. [1] Nanjing University of Aeronautics and Astronautics

      Nanjing University of Aeronautics and Astronautics

      China

    2. [2] Changshu Institute of Technology

      Changshu Institute of Technology

      China

    3. [3] Hexi University & Changshu Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01094-w
  • Enlaces
  • Resumen
    • In this paper we consider a forced oscillator with a discontinuous restoring force.

      By the Aubry–Mather theory we prove that there exist infinitely many periodic and quasiperiodic solutions. The proof relies on analysing the generating function of the system. The approach is applicable to studying the dynamics of more general forced nonsmooth oscillators of Hamiltonian type.

  • Referencias bibliográficas
    • 1. Aubry, S., Le Daeron, P.Y.: The discrete Frenkel–Kontorova model and its extensions. I. Exact results for the ground-states. Phys. D 8,...
    • 2. Bangert, V.: Mather sets for twist maps and geodesics on tori. Dyn. Rep. 1, 1–54 (1988)
    • 3. Cao, Z., Grebogi, C., Li, D., Xie, J.: The existence of Aubry–Mather sets for the Fermi–Ulam model. Qual. Theory Dyn. Syst. 20, 1–12 (2021)
    • 4. Capietto, A., Soave, N.: Some remarks on Mather’s theorem and Aubry–Mather sets. Commun. Appl. Anal. 15, 283–298 (2011)
    • 5. Chen, H., Duan, J.: Bounded and unbounded solutions of a discontinuous oscillator at resonance. Int. J. Bifur. Chaos Appl. Sci. Eng. 105,...
    • 6. Enguiça, R., Ortega, R.: Functions with average and bounded motions of a forced discontinuous oscillator. J. Dyn. Differ. Equ. 31, 1185–1198...
    • 7. Jacquemard, A., Teixeira, M.A.: Periodic solutions of a class of non-autonomous second order differential equations with discontinuous...
    • 8. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)
    • 9. Kunze, M., Küpper, T., You, J.: On the application of KAM theory to discontinuous dynamical systems. J. Differ. Equ. 139, 1–21 (1997)
    • 10. Liu, B.: Boundedness in asymmetric oscillations. J. Math. Anal. Appl. 231, 355–373 (1999)
    • 11. Mather, J.N.: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21, 457–467 (1982)
    • 12. Mather, J.N., Forni, G.: Action minimizing orbits in Hamiltonian systems. In: Graffi, S. (ed.) Transition to Chaos in Classical and Quantum...
    • 13. Moser, J.: Monotone twist mappings and the calculus of variations. Ergodic Theory Dyn. Syst. 6(3), 401–413 (1986)
    • 14. Marò, S.: Coexistence of bounded and unbounded motions in a bouncing ball model. Nonlinearity 26, 1439–1448 (2013)
    • 15. Marò, S., Ortega, V.: Twist dynamics and Aubry–Mather sets around a periodically perturbed pointvortex. J. Differ. Equ. 269, 3624–3651...
    • 16. Novaes, D.D., Silva, L.V.M.F.: Invariant tori and boundedness of solutions of non-smooth oscillators with Lebesgue integrable forcing...
    • 17. Ortega, R.: Asymmetric oscillators and twist mappings. J. Lond. Math. Soc. 53, 325–342 (1996)
    • 18. Percival, I.C.: Variational principles for invariant tori and cantori. In: Month, M., Herrara, J.C. (eds.) Syrup. on Nonlinear Dynamics...
    • 19. Pustyl’nikov, L.D.: Existence of invariant curves for maps close to degenerate maps, and a solution of the Fermi–Ulam problem. Russ. Acad....
    • 20. Zhang, X., Xie, J., Li, D., Cao, Z., Grebogi, C.: Stability analysis of the breathing circle billiard. Chaos Solitons Fractals 155, 111643-1–12...
    • 21. Zharnitsky, V.: Invariant curve theorem for quasiperiodic twist mappings and stability of motion in the Fermi–Ulam problem. Nonlinearity...
    • 22. Zharnitsky, V.: Invariant tori in Hamiltonian systems with impacts. Commun. Math. Phys. 211(2), 289–302 (2000)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno