We consider the Fermi–Ulam model, which can be described as a particle moving freely between two vertical rigid walls; the left one being fixed, whereas the right one moves according to a regular periodic function. The particle is elastically reflected when hitting the walls. We show that the dynamics of the model can be described by an area-preserving monotone twist map. Thus, the Aubry–Mather sets exist for every rotation number in the rotation interval. Consequently, this gives a description of global dynamics behavior, particularly a large class of periodic and quasiperiodic orbits for the model.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados