Ir al contenido

Documat


Theoretical and Numerical Bifurcation Analysis of a Discrete Predator–Prey System of Ricker Type with Weak Allee Effect

  • Parvaiz Ahmad Naik [2] ; Rizwan Ahmed [1] ; Aniqa Faizan [3]
    1. [1] Air University

      Air University

      Pakistán

    2. [2] Youjiang Medical University for Nationalities
    3. [3] Khawaja Fareed University of Engineering and Information Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01124-7
  • Enlaces
  • Resumen
    • This study aims to explore the complexity of a discrete-time predator–prey system with a weak Allee effect. The existence and stability of fixed points, as well as period-doubling and Neimark–Sacker bifurcations, are all investigated. The system’s bifurcating and fluctuating behavior is controlled using feedback and hybrid control techniques. Additionally, numerical simulations are performed as evidence to support theoretical results. From an ecological perspective, these findings suggest that the Allee effect plays a pivotal role in shaping predator–prey dynamics. The moderate Allee effect fosters stability in both predator and prey populations, promoting coexistence and persistence within ecosystems. However, the disproportionate impact on predator populations underscores predators’ vulnerability to changes in prey behavior and availability, highlighting the importance of considering indirect effects in ecological modeling and conservation efforts.

  • Referencias bibliográficas
    • 1. Edelstein-Keshet, L.: Mathematical models in biology. Society for Industrial and Applied Mathematics (2005)
    • 2. Lotka, A.J.: Elements of physical biology. Sci. Prog. Twent. Century 1919–1933(21), 341–343 (1926)
    • 3. Volterra, V.: Fluctuations in the abundance of a species considered mathematically. Nature 118, 558– 560 (1926)
    • 4. Shahzad, M.A., Ahmed, R.: Dynamic complexity of a discrete predator–prey model with prey refuge and herd behavior. VFAST Trans. Math. 11,...
    • 5. Deng, H., Chen, F., Zhu, Z., Li, Z.: Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator cannibalism. Adv. Differ....
    • 6. Ahmed, R.: Complex dynamics of a fractional-order predator–prey interaction with harvesting. Open J. Discrete Appl. Math. 3(3), 24–32 (2020)
    • 7. Ma, Y., Zhao, M., Du, Y.: Impact of the strong Allee effect in a predator–prey model. AIMS Math. 7(9), 16296–16314 (2022)
    • 8. Sarkar, K., Khajanchi, S.: Impact of fear effect on the growth of prey in a predator–prey interaction model. Ecol. Complex. 42, 100826...
    • 9. Sarkar, K., Khajanchi, S.: An eco-epidemiological model with the impact of fear. Chaos Int. J. Nonlinear Sci. 32(8), 083126 (2022)
    • 10. Tiwari, V., Tripathi, J.P., Mishra, S., Upadhyay, R.K.: Modeling the fear effect and stability of nonequilibrium patterns in mutually...
    • 11. Tripathi, J.P., Bugalia, S., Jana, D., Gupta, N., Tiwari, V., Li, J., Sun, G.Q.: Modeling the cost of anti-predator strategy in a predator–prey...
    • 12. Gonzalez-Olivares, E., Mena-Lorca, J., Rojas-Palma, A., Flores, J.D.: Dynamical complexities in the Leslie–Gower predator-prey model as...
    • 13. Anacleto, M., Vidal, C.: Dynamics of a delayed predator–prey model with Allee effect and Holling type II functional response. Math. Method....
    • 14. Sen, D., Ghorai, S., Banerjee, M., Morozov, A.: Bifurcation analysis of the predator–prey model with the Allee effect in the predator....
    • 15. Mondal, B., Sarkar, S., Ghosh, U.: Complex dynamics of a generalist predator–prey model with hunting cooperation in predator. Eur. Phys....
    • 16. Chou, Y., Chow, Y., Hu, X., Jang, S.R.J.: A Ricker-type predator–prey system with hunting cooperation in discrete time. Math. Comput....
    • 17. Hamada, M.Y., El-Azab, T., El-Metwally, H.: Allee effect in a Ricker type predator–prey model. J. Math. Comput. Sci. 29, 239–251 (2023)
    • 18. Hamada, M.Y., El-Azab, T., El-Metwally, H.: Bifurcations and dynamics of a discrete predator–prey model of Ricker type. J. Appl. Math....
    • 19. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)
    • 20. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44(1), 331–340...
    • 21. DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for tropic interaction. Ecology 56(4), 881–892 (1975)
    • 22. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am....
    • 23. Chen, X., Zhang, X.: Dynamics of the predator–prey model with the sigmoid functional response. Stud. Appl. Math. 147(1), 300–318 (2021)
    • 24. Arancibia-Ibarra, C., Aguirre, P., Flores, J., van Heijster, P.: Bifurcation analysis of a predator–prey model with predator intraspecific...
    • 25. Braza, P.A.: Predator–prey dynamics with square root functional responses. Nonlinear Anal. Real World Appl. 13(4), 1837–1843 (2012)
    • 26. Khajanchi, S.: Modeling the dynamics of stage-structure predator–prey system with Monod–Haldane type response function. Appl. Math. Comput....
    • 27. Khajanchi, S.: Dynamic behavior of a Beddington–DeAngelis type stage-structured predator–prey model. Appl. Math. Comput. 244, 344–360...
    • 28. Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure predator–prey model with ratio-dependent functional response....
    • 29. Sarkar, K., Khajanchi, S., Mali, P.C., Nieto, J.J.: Rich dynamics of a predator–prey system with different kinds of functional responses....
    • 30. Ahmed, R., Almatrafi, M.B.: Complex dynamics of a predator–prey system with Gompertz growth and herd behavior. Int. J. Anal. Appl. 21,...
    • 31. Tripathi, J.P., Abbas, S., Thakur, M.: Dynamical analysis of a prey–predator model with Beddington– DeAngelis type function response incorporating...
    • 32. Tripathi, J.P., Abbas, S., Thakur, M.: A density dependent delayed predator-prey model with Beddington–DeAngelis type function response...
    • 33. Naik, P.A., Eskandari, Z., Yavuz, M., Huang, Z.: Bifurcation results and chaos in a two-dimensional predator-prey model incorporating...
    • 34. Liu, W., Cai, D.: Bifurcation, chaos analysis and control in a discrete-time predator–prey system. Adv. Differ. Equ. 2019, 11 (2019)
    • 35. Khan, A.Q., Ahmad, I., Alayachi, H.S., Noorani, M.S.M., Khaliq, A.: Discrete-time predator–prey model with flip bifurcation and chaos...
    • 36. Naik, P.A., Amer, M., Ahmed, R., Qureshi, S., Huang, Z.: Stability and bifurcation analysis of a discrete predator–prey system of Ricker...
    • 37. AlSharawi, Z., Pal, S., Pal, N., Chattopadhyay, J.: A discrete-time model with non-monotonic functional response and strong Allee effect...
    • 38. Ahmed, R., Ahmad, A., Ali, N.: Stability analysis and Neimark–Sacker bifurcation of a nonstandard finite difference scheme for Lotka–Volterra...
    • 39. Khan, A., Bukhari, S., Almatrafi, M.: Global dynamics, Neimark–Sacker bifurcation and hybrid control in a Leslie’s prey–predator model....
    • 40. Naik, P.A., Eskandari, Z., Shahkari, H.E., Owolabi, K.: Bifurcation analysis of a discrete-time prey– predator model. Bull. Biomath. 1(2),...
    • 41. Suleman, A., Ahmed, R., Alshammari, F.S., Shah, N.A.: Dynamic complexity of a slow–fast predator– prey model with herd behavior. AIMS...
    • 42. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Addison-Wesley, New York...
    • 43. Zhao, M., Li, C., Wang, J.: Complex dynamic behaviors of a discrete-time predator-prey system. J. Appl. Anal. Comput. 7(2), 478–500 (2017)
    • 44. Rana, S.M.S.: Dynamics and chaos control in a discrete-time ratio-dependent Holling–Tanner model. J. Egypt. Math. Soc. 27, 48 (2019)
    • 45. Baydemir, P., Merdan, H., Karaoglu, E., Sucu, G.: Complex dynamics of a discrete-time prey–predator system with Leslie type: stability,...
    • 46. Akhtar, S., Ahmed, R., Batool, M., Shah, N.A., Chung, J.D.: Stability, bifurcation and chaos control of a discretized Leslie prey–predator...
    • 47. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey–predator model with mixed functional response....
    • 48. Eskandari, Z., Naik, P.A., Yavuz, M.: Dynamical behaviors of a discrete-time prey–predator model with harvesting effect on the predator....
    • 49. Naik, P.A., Eskandari, Z., Madzvamuse, A., Avazzadeh, Z., Zu, J.: Complex dynamics of a discretetime seasonally forced SIR epidemic model....
    • 50. Liu, W., Cai, D.: Bifurcation, chaos analysis and control in a discrete-time predator–prey system. Adv. Differ. Equ. 2019, 11 (2019)
    • 51. Li, Y., Zhang, F., Zhuo, X.: Flip bifurcation of a discrete predator–prey model with modified Leslie– Gower and Holling-type III schemes....
    • 52. Rajni, Ghosh, B.: Multistability, chaos and mean population density in a discrete-time predator–prey system. Chaos Solitons Fract. 162,...
    • 53. Yousef, A., Algelany, A.M., Elsadany, A.: Codimension one and codimension two bifurcations in a discrete Kolmogorov-type predator–prey...
    • 54. Khan, A.Q., Alsulami, I.M.: Complicate dynamical analysis of a discrete predator–prey model with a prey refuge. AIMS Math. 8(7), 15035–15057...
    • 55. Tassaddiq, A., Shabbir, M.S., Din, Q., Naaz, H.: Discretization, bifurcation, and control for a class of predator–prey interactions. Fract....
    • 56. Zhou, Q., Chen, F., Lin, S.: Complex dynamics analysis of a discrete amensalism system with a cover for the first species. Axioms 11(8),...
    • 57. Mukherjee, D.: Global stability and bifurcation analysis in a discrete-time two prey one predator model with help. Int. J. Model. Simul....
    • 58. Lin, S., Chen, F., Li, Z., Chen, L.: Complex dynamic behaviors of a modified discrete Leslie–Gower predator–prey system with fear effect...
    • 59. Ahmed, R., Rafaqat, M., Siddique, I., Arefin, M.A.: Complex dynamics and chaos control of a discrete-time predator–prey model. Discrete...
    • 60. Hamada, M.Y., El-Azab, T., El-Metwally, H.: Bifurcation analysis of a two-dimensional discrete-time predator–prey model. Math. Method....
    • 61. Allee, W.C.: Animal aggregations, a study in general sociology. The University of Chicago Press (1931)
    • 62. Celik, C., Duman, O.: Allee effect in a discrete-time predator–prey system. Chaos Solitons Fract. 40(4), 1956–1962 (2009)
    • 63. Dennis, B.: Allee effects: population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3(4), 481–538 (1989)
    • 64. Gascoigne, J., Lipcius, R.: Allee effects in marine systems. Mar. Ecol. Prog. Ser. 269, 49–59 (2004)
    • 65. Courchamp, F., Berec, L., Gascoigne, J.: Allee effects in ecology and conservation. Oxford University Press (2008)
    • 66. Vinoth, S., Sivasamy, R., Sathiyanathan, K., Unyong, B., Rajchakit, G., Vadivel, R., Gunasekaran, N.: The dynamics of a Leslie-type predator–prey...
    • 67. Du, Y., Niu, B., Wei, J.: Dynamics in a predator–prey model with cooperative hunting and Allee effect. Mathematics 9(24), 3193 (2021)
    • 68. Shang, Z., Qiao, Y.: Bifurcation analysis of a Leslie-type predator–prey system with simplified Holling type IV functional response and...
    • 69. Fang, K., Zhu, Z., Chen, F., Li, Z.: Qualitative and bifurcation analysis in a Leslie–Gower model with Allee effect. Qual. Theory Dyn....
    • 70. Ahmed, R., Akhtar, S., Farooq, U., Ali, S.: Stability, bifurcation, and chaos control of predator–prey system with additive Allee effect....
    • 71. Isik, S.: A study of stability and bifurcation analysis in discrete-time predator–prey system involving the Allee effect. Int. J. Biomath....
    • 72. Zhao, M., Du, Y.: Stability and bifurcation analysis of an amensalism system with Allee effect. Adv. Differ. Equ. 2020, 341 (2020)
    • 73. Cai, J., Pinto, M., Xia, Y.: Stability and bifurcation analysis of a commensal model with Allee effect and herd behavior. Int. J. Bifur....
    • 74. Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J.: Complex dynamics of a discrete-time Bazykin– Berezovskaya prey–predator model with a strong...
    • 75. Manna, D., Maiti, A., Samanta, G.P.: Deterministic and stochastic analysis of a predator–prey model with Allee effect and herd behaviour....
    • 76. Biswas, S., Pal, D., Mahapatra, G.S., Samanta, G.P.: Dynamics of a prey–predator system with herd behaviour in both and strong Allee effect...
    • 77. Saha, S., Maiti, A., Samanta, G.P.: A Michaelis–Menten predator-prey model with strong Allee effect and disease in prey incorporating...
    • 78. Saha, S., Maiti, A., Samanta, G.: Analysis of a prey–predator model with prey refuge in infected prey and strong Allee effect in susceptible...
    • 79. Khabyah, A.A., Ahmed, R., Akram, M.S., Akhtar, S.: Stability, bifurcation, and chaos control in a discrete predator–prey model with strong...
    • 80. Tripathi, J.P., Mandal, P.S., Poonia, A., Bajiya, V.P.: A widespread interaction between generalist and specialist enemies: the role of...
    • 81. Lai, X., Liu, S., Lin, R.: Rich dynamical behaviours for predator–prey model with weak Allee effect. Appl. Anal. 89(8), 1271–1292 (2010)
    • 82. Pal, S., Sasmal, S.K., Pal, N.: Chaos control in a discrete-time predator–prey model with weak Allee effect. Int. J. Biomath. 11(7), 1850089...
    • 83. Ye, Y., Liu, H., Wei, Y.M., Ma, M., Zhang, K.: Dynamic study of a predator–prey model with weak Allee effect and delay. Adv. Math. Phys....
    • 84. Linda, J.S.: Allen. An introduction to mathematical biology, Pearson/Prentice Hall (2007)
    • 85. Khajanchi, S., Perc, M., Ghosh, D.: The influence of time delay in a chaotic cancer model. Chaos Int. J. Nonlinear Sci. 28(10), 103101...
    • 86. Biswas, S., Ahmad, B., Khajanchi, S.: Exploring dynamical complexity of a cannibalistic ecoepidemiological model with multiple time delay....
    • 87. Sarkar, K., Khajanchi, S., Mali, P.C.: A delayed eco-epidemiological model with weak Allee effect and disease in prey. Int. J. Bifur....
    • 88. Chen, X., Wang, X.: Qualitative analysis and control for predator–prey delays system. Chaos Solitons Fract. 123, 361–372 (2019)
    • 89. Xie, B., Wang, Z., Xue, Y., Zhang, Z.: The dynamics of a delayed predator–prey model with double Allee effect. Discrete Dyn. Nat. Soc....
    • 90. Anacleto, M., Vidal, C.: Dynamics of a delayed predator–prey model with Allee effect and Holling type II functional response. Math. Method....
    • 91. Sarkar, K., Khajanchi, S.: Spatiotemporal dynamics of a predator–prey system with fear effect. J. Frankl. Inst. 360, 7380–7414 (2023)
    • 92. Djilali, S., Boudjema, I.: Turing–Hopf bifurcation in Gauss-type model with cross-diffusionn and its application. Nonlinear Stud. 25(3),...
    • 93. Djilali, S., Bentout, S.: Pattern formations of a delayed diffusive predator–prey model with predator harvesting and prey social behavior....
    • 94. Mezouaghi, A., Djilali, S., Bentout, S., Biroud, K.: Bifurcation analysis of a diffusive predator–prey model with prey social behavior...
    • 95. Bentout, S., Djilali, S., Atangana, A.: Bifurcation analysis of an age-structured prey–predator model with infection developed in prey....
    • 96. Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction–diffusion predator-prey model with both refuge and harvesting. Nonlinear Dyn....
    • 97. Yan, S., Jia, D., Zhang, T., Yuan, S.: Pattern dynamics in a diffusive predator–prey model with hunting cooperations. Chaos Soliton. Fract....
    • 98. Luo, A.C.J.: Regularity and Complexity in Dynamical Systems. Springer (2012)
    • 99. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Ffields. Springer, New York (1983)
    • 100. Wiggins, S., Golubitsky, M.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag (2003)
    • 101. McShea, W.J.: Ecology and management of white-tailed deer in a changing world. Ann. N. Y. Acad. Sci. 1249(1), 45–56 (2012)
    • 102. Kroon, F.J., Thorburn, P., Schaffelke, B., Whitten, S.: Towards protecting the Great Barrier Reef from land-based pollution. Glob. Change...
    • 103. Fabricius, C., Koch, E., Turner, S., Magome, H.: Rights resources and rural development: Communitybased natural resource management in...
    • 104. Chen, G., Dong, X.: From Chaos to Order. World Scientific (1998)
    • 105. Lei, C., Han, X., Wang, W.: Bifurcation analysis and chaos control of a discrete-time prey–predator model with fear factor. Math. Biosci....
    • 106. Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno