Ir al contenido

Documat


Qualitative and Bifurcation Analysis in a Leslie-Gower Model with Allee Effect

  • Kan Fang [1] ; Zhenliang Zhu [1] ; Fengde Chen [1] ; Zhong Li [1]
    1. [1] Fuzhou University

      Fuzhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we consider a Leslie-Gower model with weak Allee effect in the prey. By analysing the dynamics near the origin, we show that both predator and prey will tend to extinction if the intensity of Allee effect is strong enough. Meanwhile, we provide some sufficient conditions on the global asymptotic stability of the unique positive equilibrium. In addition, Allee effect can change the stability of positive equilibrium, which leads to the occurrence of a supercritical Hopf bifurcation and one stable limit cycle. It is interesting to note that there exists at least one limit cycle around the unstable positive equilibrium. In particular, sufficient conditions for the existence of a unique stable limit cycle have been presented. Numerical simulations are conducted to validate the main results.

  • Referencias bibliográficas
    • 1. Zhang, F.Q., Chen, Y.M., Li, J.Q.: Dynamical analysis of a stage-structured predator-prey model with cannibalism. Math. Biosci. 307, 33–41...
    • 2. Xiang, C., Huang, J.C., Ruan, S.G., Xiao, D.M.: Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response....
    • 3. Xiao, D.M., Ruan, S.G.: Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differ. Equ....
    • 4. Zhang, C.Y., Wu, R.C., Chen, M.X.: Hopf bifruaction in a delayed predator-prey system with general group defence for prey. J. Appl. Anal....
    • 5. Li, Z., Han, M.A., Chen, F.D.: Global stability of a predator-prey system with stage structure and mutual interference. Discrete Contin....
    • 6. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika...
    • 7. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)
    • 8. Allee, W.C.: Animal Aggregations: A Study in General Sociology. University of Chicago Press, USA (1932)
    • 9. Kuussaari, M., Saccheri, I., Camara, M., Hanski, I.: Allee effect and population dynamics in the glanville fritillary butterfly. Oikos...
    • 10. Stephens, P.A., Sutherland, W.J.: Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14(10),...
    • 11. Courchamp, F., Grenfell, B., Clutton-Brock, T.: Population dynamics of obligate cooperators. Proc. R. Soc. Lond. B 266(1419), 557–563...
    • 12. Zhu, Z.L., He, M.X., Li, Z., Chen, F.D.: Stability and Bifurcation in a Logistic Model with Allee Effect and Feedback Control. Int. J....
    • 13. Lv Y.Y., Chen L.J., Chen F.D., L, Z.: Stability and Bifurcation in an SI Epidemic Model with Additive Allee Effect and Time Delay. Int....
    • 14. Liu, X.S., Dai, B.X.: Dynamics of a predator-prey model with double Allee effects and impulse. Nonlinear Dynam. 88(1), 685–701 (2017)
    • 15. Biswas, S., Sasmal, S.K., Samanta, S., Saifuddin, M., Pal, N., Chattopadhyay, J.: Optimal harvesting and complex dynamics in a delayed...
    • 16. Manna, D., Maiti, A., Samanta, G.P.: A Michaelis-Menten type food chain model with strong Allee effect on the prey. Appl. Math. Comput....
    • 17. Zu, J., Mimura, M., Wakano, J.Y.: The evolution of phenotypic traits in a predator-prey system subject to Allee effect. J. Theor. Biol....
    • 18. González-Olivares, E., Rojas-Palma, A.: Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response...
    • 19. Wu, R.X., Li, L., Lin, Q.F.: A Holling type commensal symbiosis model involving Allee effect. Commun. Math. Biol. Neurosci. Article ID...
    • 20. Lin, Q.F.: Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ. 2018(1), 190...
    • 21. Wei, Z., Xia, Y.H., Zhang, T.H.: Stability and bifurcation analysis of an Amensalism model with weak Allee effect. Qual. Theor. Dyn. Syst....
    • 22. Guan, X.Y., Liu, Y., Xie, X.D.: Stability analysis of a Lotka-Volterra type predator-prey system with Allee effect on the predator species....
    • 23. Merdan, H.: Stability analysis of a Lotka-Volterra type predator-prey system involving Allee effects. ANZIAM J. 52(2), 139–145 (2010)
    • 24. Guan, X.Y., Chen, F.D.: Dynamical analysis of a two species amensalism model with BeddingtonDeAngelis functional response and Allee effect...
    • 25. Martnez-Jeraldo, N., Aguirre, P.: Allee effect acting on the prey species in a Leslie-Gower predation model. Nonlinear Anal. Real World...
    • 26. Gonzlez-Olivares, E., Rojas-Palma, A.: Influence of the strong Allee effect on prey and the competition among predators in Leslie-Gower...
    • 27. Liu, Y.Y., Wei, J.J.: Spatiotemporal dynamics of a modified Leslie-Gower model with weak Allee effect. Int. J. Bifurcat. Chaos. 30(12),...
    • 28. Ni, W.J., Wang, M.X.: Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey. J. Differ....
    • 29. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001)
    • 30. Martínez-Jeraldo, N., Aguirre, P.: Allee effect acting on the prey species in a Leslie CGower predation model. Nonlinear Anal. Real World...
    • 31. Hu, D.P., Cao, H.J.: Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting. Nonlinear...
    • 32. Huang, J.C., Ruan, S.G., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional...
    • 33. Chen, F.D.: On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay. Appl. Math. Comput. 180(1), 33–49...
    • 34. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equation. Science Press, Beijing (1992)
    • 35. Chen, L.S.: Mathematical Models and Methods in Ecology. Science Press, Beijing (1988)
    • 36. Zhang, Z.F.: Proof of the uniqueness theorem of limit cycles of generalized lienard equation. Appl. Anal. 23(1–2), 63–76 (1986)
    • 37. Zegeling, A., Kooij, R.E.: A Predator-Prey Model with Ivlevs Functional Response. J. Math. Anal. Appl. 198, 473–489 (1996)
    • 38. Zegeling, A., Kooij, R.E.: Uniqueness of limit cycles in polynomial systems with algebraic invariants. Bull. Austral. Math. Soc. 49, 7–20...
    • 39. Zegeling, A., Kooij, R.E.: Several Bifurcation Mechanisms for Limit Cycles in aPredator-Prey System. Qual. Theory Dyn. Syst. 20, 65 (2021)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno