Ir al contenido

Documat


A Bivariate Model based on Compound Negative Binomial Distribution

  • Autores: Maha Omar, Fatimah Almuhayfith, Abdulhamid Alzaid
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 41, Nº. 1, 2018, págs. 87-108
  • Idioma: inglés
  • DOI: 10.15446/rce.v41n1.57803
  • Títulos paralelos:
    • Un modelo basado en bivariadas compuesto distribución binomial negativa
  • Enlaces
  • Resumen
    • español

      Resumen Un nuevo modelo de dos variables se introduce mediante la composición distribuciones binomiales negativos y geométricos. propiedades distributivas, incluyendo distribuciones conjuntas, marginales y condicionales se discuten. se obtienen las expresiones para los momentos de productos, la covarianza y el coeficiente de correlación. Se estudian algunas propiedades tales como pedidos, unimodalidad, monotonía y la auto-decomposability. Estimadores de parámetros utilizando el método de los momentos y de máxima verosimilitud se derivan. Aplicaciones a los datos de accidentes de tráfico se ilustran.

    • English

      Abstract A new bivariate model is introduced by compounding negative binomial and geometric distributions. Distributional properties, including joint, marginal and conditional distributions are discussed. Expressions for the product moments, covariance and correlation coefficient are obtained. Some properties such as ordering, unimodality, monotonicity and self-decomposability are studied. Parameter estimators using the method of moments and maximum likelihood are derived. Applications to traffic accidents data are illustrated.

  • Referencias bibliográficas
    • Abramowitz, M.,Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs and mathematical tables. 10. National Bureau...
    • Alzaid, A. A.,Almuhayfith, F. E.,Omair, M. A. (2017). 'Bivariate regression models based on compound Poisson distribution'. Communication...
    • Barlow, R. E.,Proschan, F. (1975). Statistical theory of reliability and life testing: probability models, Holt. Rinehart and Winston. Inc,...
    • Cacoullos, T.,Papageorgiou, H. (1980). 'On some bivariate probability models applicable to traffic accidents and fatalities'. International...
    • Cacoullos, T.,Papageorgiou, H. (1982). 'Bivariate negative binomial-Poisson and negative Binomial-Bernoulli models with an application...
    • Cai, J.,Garrido, J. (2000). 'Two-sided bounds for tails of compound negative binomial distributions in the exponential and heavy-tailed...
    • dhaene, J. (1991). 'Approximating the compound negative binomial distribution by the compound Poisson distribution'. Bulletin of the...
    • Drekic, S.,Willmot, G. E. (2005). 'On the moments of the time of ruin with applications to phase-type claims'. North American Actuarial...
    • Gerber, H. U. (1984). 'Error bounds for the compound Poisson approximation'. Insurance: Mathematics and Economics. 3. 191
    • Hanagal, D. D.,Dabade, A. D. (2013). 'Compound negative binomial shared frailty models for bivariate survival data'. Statistics &...
    • Jewell, W.,Milidiu, R. (1986). 'Strategies for computation of compound distributions with two-sided severities'. Insurance: Mathematics...
    • Johnson, N. L.,Kemp, A. W.,Kotz, S. (2005). distributions. 3. John Wiley & Sons, Inc. New York.
    • Karp, D.,Sitnik, S. (2010). 'Log-convexity and log-concavity of hypergeometriclike functions'. Journal of Mathematical Analysis and...
    • Kemp, A. W. (1968). 'A wide class of discrete distributions and the associated differential equations. Sankhya: The Indian Journal of...
    • Leiter, R. E.,Hamdan, M. (1973). 'Some bivariate probability models applicable to traffic accidents and fatalities. International Statistical...
    • Özel, G. (2011). 'A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in turkey. Environmetrics....
    • Özel, G. (2011). 'On certain properties of a class of bivariate compound Poisson distributions and an application to earthquake data....
    • Panjer, H. H.,Willmot, G. E. (1981). 'Finite sum evaluation of the negative binomial-exponential model. ASTIN Bulletin. 12. 133
    • Papageorgiou, H. (1985). 'On a bivariate Poisson-geometric distribution. Applicationes Mathematicae. 4. 541
    • Papageorgiou, H. (1995). 'Some remarks on the d compound Poisson distribution'. Statistical Papers. 36. 371
    • Papageorgiou, H.,Loukas, S. (1988). 'On estimating the parameters of a bivariate probability model applicable to traffic accidents'....
    • Ramsay, C. M. (2009). 'The distribution of compound sums of Pareto distributed losses'. Scandinavian Actuarial Journal. 27-37
    • Shaked, M.,Shanthikumar, J. G. (2007). Stochastic orders. 1. Springer Science & Business Media. New York.
    • Steutel, F. W.,van Harn, K. (2004). Infinite divisibility of probability distributions on the real line. 10. Marcel Dekker, Inc.
    • Subrahmaniam, K. (1966). 'On a general class of contagious distributions: The Pascal-Poisson distribution'. Trabajos de estadística...
    • Subrahmaniam, K. (1978). 'The Pascal-Poisson distribution revisited: estimation and efficiency'. Communications in Statistics-Theory...
    • Upadhye, N.,Vellaisamy, P. (2014). 'Compound Poisson approximation to convolutions of compound negative binomial variables'. Methodology...
    • Vellaisamy, P.,Upadhye, N. (2009). 'Compound negative binomial approximations for sums of random variables'. Probability and Mathematical...
    • Vellaisamy, P.,Upadhye, N. (2009). 'On the sums of compound negative binomial and gamma random variables'. Journal of Applied Probability....
    • Wang, Z. (2011). 'One mixed negative binomial distribution with application'. Journal of Statistical Planning and Inference. 141....
    • Willmot, G. E.,Lin, X. (1997). 'Upper bounds for the tail of the compound negative binomial distribution'. Scandinavian Actuarial...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno