Ir al contenido

Documat


Complete Description of Local Conservation Laws for Generalized Dissipative Westervelt Equation

  • Artur Sergyeyev [1]
    1. [1] Silesian University in Opava

      Silesian University in Opava

      Chequia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01066-0
  • Enlaces
  • Resumen
    • We give a complete description of inequivalent nontrivial local conservation laws of all orders for a natural generalization of the dissipative Westervelt equation and, in particular, show that the equation under study admits an infinite number of inequivalent nontrivial local conservation laws for the case of more than two independent variables.

  • Referencias bibliográficas
    • 1. Anco, S.C., Bluman, G.: Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation...
    • 2. Anco, S.C., Márquez, A.P., Garrido, T.M., Gandarias, M.L.: Symmetry analysis and hidden variational structure of Westervelt’s equation...
    • 3. Baran, H., Marvan, M.: Jets. A software for differential calculus on jet spaces and diffieties. http://jets. math.slu.cz/
    • 4. Bhatt, A., Moore, B.E.: Exponential integrators preserving local conservation laws of PDEs with time-dependent damping/driving forces....
    • 5. Błaszak, M., Sergyeyev, A.: Generalized Stäckel systems. Phys. Lett. A 375(27), 2617–2623 (2011)
    • 6. Cheviakov, A., Zhao, P.: Analytical Properties of Nonlinear Partial Differential Equations: With Applications to Shallow Water Models....
    • 7. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)
    • 8. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53(5), 603–610 (2000)
    • 9. Dorodnitsyn, V.A., Kaptsov, E.I.: Discrete shallow water equations preserving symmetries and conservation laws. J. Math. Phys. 62, 083508...
    • 10. Frasca-Caccia, G., Hydon, P.: A new technique for preserving conservation laws. Found. Comput. Math. 22, 477–506 (2022)
    • 11. Giné, J.: On the first integrals in the center problem. Bull. Sci. Math. 137(4), 457–465 (2013)
    • 12. Hamilton, M.F., Morfey, C.L.: Model equations. In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, pp. 41–64. Academic Press,...
    • 13. Holba, P.: Complete classification of local conservation laws for a family of PDEs generalizing Cahn– Hilliard and Kuramoto–Sivashinsky...
    • 14. Igonin, S.A.: Conservation laws for multidimensional systems and related linear algebra problems. J. Phys. A: Math. Gen. 35, 10607–10617...
    • 15. Kaptsov, E.I., Dorodnitsyn, V.A., Meleshko, S.V.: Conservative invariant finite-difference schemes for the modified shallow water equations...
    • 16. Kaptsov, E.I., Dorodnitsyn, V.A., Meleshko, S.V.: Invariant finite-difference schemes for cylindrical one-dimensional MHD flows with conservation...
    • 17. Kaptsov, E.I., Meleshko, S.V.: Analysis of the one-dimensional Euler–Lagrange equation of continuum mechanics with a Lagrangian of a special...
    • 18. Llibre, J., Valls, C.: Invariants of polynomial vector fields. J. Differ. Equ. 365, 895–904 (2023)
    • 19. Ma, W.-X.: The commutative property of reciprocal transformations and dimensional deformations. Qual. Theory Dyn. Syst. 23, 2 (2024)
    • 20. Marvan, M., Sergyeyev, A.: Recursion operator for the stationary Nizhnik–Veselov–Novikov equation. J. Phys. A: Math. Gen. 36(5), L87–L92...
    • 21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1993)
    • 22. Pan-Collantes, A.J.: Integrable (3+1)-dimensional generalization for the dispersionless DaveyStewartson system. Qual. Theory Dyn....
    • 23. Sergyeyev, A., Vitolo, R.: Symmetries and conservation laws for the Karczewska–Rozmej–Rutkowski– Infeld equation. Nonlinear Anal. Real...
    • 24. Shen, Y., Tian, B., Yang, D.Y., Zhou, T.-Y.: Studies on a three-field lattice system: N-fold Darboux transformation, conservation laws...
    • 25. Tracinà, R., Freire, I.L., Torrisi, M.: Nonlinear self-adjointness of a class of third order nonlinear dispersive equations. Commun. Nonlinear...
    • 26. Vašíˇcek, J.: Conservation laws and nonexistence of local Hamiltonian structures for generalized Infeld– Rowlands equation. Accepted for...
    • 27. Westervelt, P.: Parametric acoustic array. J. Acoust. Soc. Am. 35, 535–537 (1963)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno