Ir al contenido

Documat


Studies on a Three-Field Lattice System: N-Fold Darboux Transformation, Conservation Laws and Analytic Solutions

  • Autores: Yuan Shen, Bo Tian, Dan-Yu Yang, Tian-Yu Zhou
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Researches on the nonlinear lattice equations are active, with the applications in nonlinear optics, condensed matter physics, plasma physics, etc. What we study in this paper is a three-field lattice system, which can be reduced to a modified Toda lattice system and a coupled lattice system. Based on a known Lax pair, we present an N-fold Darboux matrix, and then construct an N-fold Darboux transformation for that system, where N is a positive integer. The first three conservation laws of that system are determined via the Lax pair. Utilizing that N-fold Darboux transformation with N = 1 and 2, we obtain the one-fold solutions and two-fold solutions of that system. Those solutions can be used to describe the discrete solitons. Via the onefold solutions, we present a combination of the kink-shaped discrete one soliton and bell-shaped discrete one soliton. Amplitude, shape and velocity of that combination remain unchanged during the propagation.

  • Referencias bibliográficas
    • 1. Jürgensen, M., Rechtsman, M.C.: Chern number governs soliton motion in nonlinear thouless pumps. Phys. Rev. Lett. 128, 113901 (2022)
    • 2. Jezequel, L., Delplace, P.: Nonlinear edge modes from topological one-dimensional lattices. Phys. Rev. B 105, 035410 (2022)
    • 3. Jung, P.S., Pyrialakos, G.G., Wu, F.O., Parto, M., Khajavikhan, M., Krolikowski, W., Christodoulides, D.N.: Thermal control of the topological...
    • 4. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn....
    • 5. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn....
    • 6. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive...
    • 7. Pickering, A., Zhao, H.Q., Zhu, Z.N.: On the continuum limit for a semidiscrete Hirota equation. Proc. R. Soc. A. 472, 20160628 (2016)
    • 8. Hennig, D., Tsironis, G.P.: Wave transmission in nonlinear lattices. Phys. Rep. 307, 333 (1999)
    • 9. Vakhnenko, O.O.: Integrable nonlinear triplet lattice system with the combined inter-mode couplings. Eur. Phys. J. Plus 135, 769 (2020)
    • 10. Doi, Y., Yoshimura, K.: Construction of nonlinear lattice with potential symmetry for smooth propagation of discrete breather. Nonlinearity...
    • 11. Hennig, D., Karachalios, N.I.: Dynamics of nonlocal and local discrete Ginzburg-Landau equations: global attractors and their congruence....
    • 12. Shige, S., Miyasaka, K., Shi, W., Soga, Y., Sato, M., Sievers, A.J.: Experimentally observed evolution between dynamic patterns and intrinsic...
    • 13. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431 (1967)
    • 14. Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23, 501 (1967)
    • 15. Chen, X.M., Hu, X.B., Müller-Hoissen, F.: Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants. Nonlinearity...
    • 16. Yin, H.M., Pan, Q., Chow, K.W.: The Fermi-Pasta-Ulam-Tsingou recurrence for discrete systems: cascading mechanism and machine learning...
    • 17. Wen, X.Y., Yan, Z.Y., Zhang, G.Q.: Nonlinear self-dual network equations: modulation instability, interactions of higher-order discrete...
    • 18. Parker, R., Kevrekidis, P.G., Aceves, A.: Stationary multi-kinks in the discrete sine-Gordon equation. Nonlinearity 35, 1036 (2022)
    • 19. Scott, A.C.: Davydov solitons in polypeptides. Philos. Trans. R. Soc. London Ser. A, Math. Phys Sci. 315, 423 (1985)
    • 20. Xu, X.X.: Darboux transformation and explicit solutions for a 3-field integrable lattice system with three arbitrary constants. Int. J....
    • 21. Xu, X.X., Yang, H.X., Sun, Y.P.: Darboux transformation of the modified Toda lattice equation. Mod. Phys. Lett. B 20, 641 (2006)
    • 22. Xu, X.X.: Darboux transformation of a coupled lattice soliton equation. Phys. Lett. A 362, 205 (2007)
    • 23. Ma, W.X.: A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 9, 1711 (2019)
    • 24. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair,...
    • 25. Vakhnenko, O.O.: Nonlinear integrable dynamics of coupled vibrational and intra-site excitations on a regular one-dimensional lattice....
    • 26. Feng, B.F., Ling, L.M.: Darboux transformation and solitonic solution to the coupled complex short pulse equation. Phys. D 437, 133332...
    • 27. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for...
    • 28. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for...
    • 29. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant...
    • 30. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system...
    • 31. Mbusi, S.O., Muatjetjeja, B., Adem, A.R.: On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek...
    • 32. Kumar, S., Gupta, R.K., Kumari, P.: A new Painlevé integrable Broer-Kaup system: symmetry analysis, analytic solutions and conservation...
    • 33. Kumari, P., Gupta, R.K., Kumar, S.: The time fractional D(m, n) system: invariant analysis, explicit solution, conservation laws and optical...
    • 34. Adem, A.R.: Symbolic computation on exact solutions of a coupled Kadomtsev-Petviashvili equation: lie symmetry analysis and extended tanh...
    • 35. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132,108094 (2022)
    • 36. Gao, X.Y., Guo, Y.J., Shan,W.R.: Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave...
    • 37. Kumari, P., Gupta, R.K., Kumar, S.: Non-auto-Bäcklund transformation and novel abundant explicit exact solutions of the variable coefficients...
    • 38. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional...
    • 39. Gao, X.Y., Guo, Y.J., Shan, W.R.: Letter to the Editor on a (2+1)-dimensional variable-coefficient Sawada-Kotera system in plasma...
    • 40. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified...
    • 41. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional...
    • 42. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient BoitiLeon-Pempinelli system. Appl....
    • 43. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional...
    • 44. Gao, X.Y., Guo, Y.J., Shan, W.R., Du, Z., Chen, Y.Q.: Magnetooptic studies on a ferromagnetic material via an extended (3+1)-dimensional...
    • 45. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid...
    • 46. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional...
    • 47. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)- dimensional Yu-Toda-Sasa-Fukayama...
    • 48. Yu, X., Sun, Z.Y.: Parabola solitons for the nonautonomous KP equation in fluids and plasmas. Ann. Phys.-New York 367, 251 (2016)
    • 49. Yu, X., Sun, Z.Y.: Unconventional characteristic line for the nonautonomous KP equation. Appl. Math. Lett. 100, 106047 (2020)
    • 50. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized...
    • 51. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized...
    • 52. Moretlo, T.S., Adem, A.R., Muatjetjeja, B.: A generalized (1+2)-dimensional BogoyavlenskiiKadomtsev-Petviashvili (BKP) equation: Multiple...
    • 53. Mbusi, S.O., Muatjetjeja, B., Adem, A.R.: Lagrangian formulation, conservation laws, travelling wave solutions: a generalized Benney-Luke...
    • 54. Adem, A.R.: On the solutions and conservation laws of a two-dimensional Korteweg de Vries model: multiple exp-function method. J. Appl....
    • 55. Yang, D.Y., Tian, B., Hu, C.C., Zhou, T.Y.: The generalized Darboux transformation and higherorder rogue waves for a coupled nonlinear...
    • 56. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability...
    • 57. Wu, X.H., Gao, Y.T., Yu, X., Liu, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear...
    • 58. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-tosoliton transition for a variable-coefficient...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno