Ir al contenido

Documat


Well-Posedness of a Class of Fractional Langevin Equations

  • Mi Zhou [1] ; Lu Zhang [2]
    1. [1] University of South China

      University of South China

      China

    2. [2] Xiangtan University

      Xiangtan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00956-7
  • Enlaces
  • Resumen
    • In this work, we deal with a more general form of fractional Langevin equation.

      The equation’s nonlinearity term f is relevant to fractional integral and fractional derivative. By using the fixed point theorems, we study the existence and uniqueness of solutions of initial value problem for the nonlinear fractional Langevin equation and obtain some new results. Further, by using the technique of nonlinear functional analysis, we study the stability of Ulam-Hyers, Ulam-Hyers-Rassias and semi-UlamHyers-Rassias for the initial value problem of nonlinear Langevin equation. Finally, some examples are given to show the effectiveness of theoretical results.

  • Referencias bibliográficas
    • 1. Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integral and Derivatives (Theory and Applications). Gordon and Breach, Switzerland...
    • 2. Kilbas, A.A., Trujillo, J.J.: Differential equations of fractional order: methods results and problems-I. Appl. Anal. 78, 153–192 (2010)
    • 3. Abbas, S., Benchohra, M., Lazreg, J.E., Nieto, J.J., Zhou, Y.: Fractional Differential Equations and Inclusions, Classical and Advanced...
    • 4. Langevin, P.: On the theory of Brownian motion. Comptes Rendus 146, 530–533 (1908)
    • 5. Bounchaud, J.P., Cont, R.: A Langevin approcah to stock market fluctuations and crashes. Eur. Phys. J. B 6, 543–550 (1998)
    • 6. Wódkiewicz, K., Zubairy, M.S.: Exact solution of a nonlinear Langevin equation with applications to photo electron counting and noise-induced...
    • 7. Kosinski, R.A., Grabowski, A.: Langevin equations for modeling evacuation processes. Acta Phys. Pol., B 3, 365–376 (2010)
    • 8. Fraaije, J.G.E.M., Zvelindovsky, A.V., Sevink, G.J.A., Maurits, N.M.: Modulated self-organization in comples amphiphilic systems. Mol....
    • 9. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous Transport: Foundations and Applications. Wiley, Germany (2008)
    • 10. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)
    • 11. Mainardi, F., Pironi, P., Tampieri, F.: On a generalization of the Basset problem via fractional calculus. In: Tabarrok, B., Dost, S....
    • 12. Mainardi, F., Pironi, P.: The fractional Langevin equation: Brownian motion revisited. Extracta Math. 10, 140–154 (1996)
    • 13. Ahmad, B., Nieto, J.J.: Solvability of nonlinear Langevin equation involving two fractional orders with Dirichlet boundary conditions....
    • 14. Ahmad, B., Nieto, J.J., Alsaedi, A.: A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders....
    • 15. Ahmad, B., Nieto, J.J., Alsaedi, A., Ei-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different...
    • 16. Baghani, H., Nieto, J.J.: Applications of the Mittag-Leffler function in solvability and stability of a class of fractional Langevin equations...
    • 17. Baghani, H., Nieto, J.J.: Some new properties of the Mittag-Leffler functions and their applications to solvability and stability of a...
    • 18. Baghani, O.: On fractional Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simulat. 42, 675–681 (2017)
    • 19. Boutiara, A., Matar, M.M., Abdeljawad, T., Jarad, F.: Existence and stability analysis for Caputo generalized hybrid Langevin differential...
    • 20. Chen, A., Chen, Y.: Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions....
    • 21. Eab, C.H., Lim, S.C.: Fractional generalized Langevin equation approach to single-file diffusion. Phys. A 389, 2510–2521 (2010)
    • 22. Fa, K.S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E. 73, 061104 (2006)
    • 23. Gao, Z., Yu, X., Wang, J.: Nonlocal problems for Langevin-type differential equations with two fractional-order derivatives. Bound. Value...
    • 24. Yu, T., Deng, K., Luo, M.: Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two...
    • 25. Li, B., Sun, S., Sun, Y.: Existence of solutions for fractional Langvein equation with infinite-point boundary conditions. J. Appl. Math....
    • 26. Darzi, R.: New existence results for fractional Langevin equation. Iran. J. Sci. Technol. Trans. Sci. 43, 2193–2203 (2019)
    • 27. Lutz, E.: Fractional Langevin equation. Phys. Rev. E. 64, 051106 (2001)
    • 28. Studsutad, W., Tariboon, J.: Nonlinear fractional integro-differential Langevin equation involving two fractional orders with three-point...
    • 29. Torres, C.: Existence of solution for fractional Langevin equation: variational approach. Int. Quant. Electr. Conf. 104, 206–207 (2014)
    • 30. Wang, J.R.: Approximate mild solutions of fractional stochastic evolution equations in Hilbert space. Appl. Math. Comput. 256, 315–323...
    • 31. Wang, J.R., Feckan, M., Zhou, Y.: Presentation of solutions of impulsive fractional Langevin equations and existence result. Eur. Phys....
    • 32. Wang, J.R., Li, X.: A uniformed method to Ulam-Hyers stability for some linear fractional equations. Mediterr. J. Math. 13, 625–635 (2016)
    • 33. Wang, J.R., Li, X.: Ulam-Hyers stability of fractional Langevin equations. Appl. Math. Comput. 258, 72–83 (2015)
    • 34. Wang, X.H., Li, C.: Existence result for nonlocal Dirichlet conditions of nonlinear Langevin equation with two different fractional orders....
    • 35. Wang, J.R., Peng, S., O’Regan, D.: Local stable manifold of Langevin differential equations with two fractional derivatives. Adv. Difference...
    • 36. Wang, G., Zhang, L., Song, G.: Boundary value problem of a nonlinear Langevin equation with two different fractional orders and impulses....
    • 37. Wang, J., Zhou, Y., Wei, W., Xu, H.: Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal...
    • 38. Sandev, T., Metzler, R., Tomovski, Z.: Correlation functions for the fractional generalized Langevin equation in the presence of internal...
    • 39. Fazli, H., Sun, H.G., Nieto, J.: New existence and stability results for fractional Langevin equation with three-point boundary conditions....
    • 40. Khalili, Y., Yadollahzadeh, M.: Existence results for a new class of nonlinear Langevin equations of fractional orders. Iran. J. Sci....
    • 41. Salem, A.: Existence results of solutions for anti-periodic fractional Langevin equation. J. Appl. Anal. Comput. 10, 2557–2574 (2020)
    • 42. Rizwan, R., Zada, A.: Existence theory and Ulam-stabilities of fractional Langevin equation. Qual. Theory Dyn. Syst. 20, 1–17 (2021)
    • 43. Rizwan, R., Lee, J.R., Park, C., Zada, A.: Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives....
    • 44. Shah, S.O., Rizwan, R., Xia, Y., Zada, A.: Existence, uniqueness and stability analysis of fractional Langevin equations with anti-periodic...
    • 45. Zhai, C., Li, P.: Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders. Mediterr. J....
    • 46. Darzi, R., Agheli, B., Nieto, J.J.: Langevin equation involving three fractional orders. J. Stat. Phys. 178, 986–995 (2020)
    • 47. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations. Amsterdam, London and...
    • 48. Wang, J., Lv, L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer....
    • 49. Boyd, D.W.: On nonlinear contractions. Proc. Am. Math. Soc. 20, 458–464 (1969)
    • 50. Miahi, M., Mirzaee, F., Khodaei, H.: On convex-valued G-m-monomials with applications in stability theory. Rev. R Acad. Cienc Exactas...
    • 51. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalizes complete metric space. Bull. Am....
    • 52. Granas, A., Dugundji, J.: Fixed point Theory. Springer, New York (2003)
    • 53. Sousa, C., da Vanterler, J., Capelas de Oliveira, E.: Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno