Ir al contenido

Documat


Existence Theory and Ulam’s Stabilities of Fractional Langevin Equation

  • Rizwan, Rizwan [2] ; Zada, Akbar [1]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

    2. [2] University of Buner
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00495-5
  • Enlaces
  • Resumen
    • In this paper, we consider fractional Langevin equation and derive a formula of solutions for fractional Langevin equation involving two Caputo fractional derivatives.

      Secondly, we implement the concept of Ulam–Hyers as well as Ulam–Hyers–Rassias stability. Then, we choose Generalized Diaz–Margolis’s fixed point approach to derive Ulam–Hyers as well as Ulam–Hyers–Rassias stability results for our proposed model, over generalized complete metric space. We give several examples which support our main results.

  • Referencias bibliográficas
    • 1. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential...
    • 2. Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different...
    • 3. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)
    • 4. Cadariu, L., Radu, V.: Fixed points and the stability of Jensen’s functional equation. J Inequal. Pure Appl. Math. 4(1), 1–7 (2003)
    • 5. Choi, G., Jung, S.M.: Invariance of Hyers-Ulam stability of linear differential equations and its applications. Adv. Differ. Equ. 14 (2015)
    • 6. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalized complete matric space. Bull. Am....
    • 7. Fa, K.S.: Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73(6), 061104 (2006)
    • 8. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. 27, 222–224 (1941)
    • 9. Jung, S.M.: A fixed point approach to the stability of differential equations y0 = F(x, y). Bull. Malays. Math. Sci. Soc. 33, 47–56...
    • 10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential equation. Elsevier Science B.V (2006)
    • 11. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers (2009)
    • 12. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions....
    • 13. Li, T., Viglialoro, G.: Analysis and explicit solvability of degenerate tensorial problems. Bound. Value Probl. 1–13 (2018)
    • 14. Lim, S.C., Li, M., Teo, L.P.: Langevin equation with two fractional orders. Phys. Lett. A 372(42), 6309–6320 (2008)
    • 15. Mainardi, F., Pironi, P.: The fractional Langevin equation: Brownian motion revisited. Extracta Math. 11(1), 140–154 (1996)
    • 16. Obloza, M.: Hyers stability of the linear differential equation. Rocznik Nauk. Dydakt. Prace Mat 13, 259–270 (1993)
    • 17. Obloza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk. Dydakt. Prace Mat....
    • 18. Podlubny, I.: Fractional Differential Equations. Academic Press (1999)
    • 19. Popa, D., Rasa, I.: Hyers–Ulam stability of the linear differential operator with non-constant coefficients. Appl. Math. Comput. 219,...
    • 20. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. 72, 297–300 (1978)
    • 21. Rizwan, R.: Existence theory and stability analysis of fractional Langevin equation. Int. J. Nonlinear Sci. Numer. Simul. 20(7–8) (2019)
    • 22. Rizwan, R., Zada, A., Ahmad, M., Shah, S.O., Waheed, H.: Existence theory and stability analysis of switched coupled system of nonlinear...
    • 23. Rizwan, R., Zada, A., Wang, X.: Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses....
    • 24. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods App. Sci. 43(1), 427–442 (2020)
    • 25. Rus, I.A.: Ulam stability of ordinary differential equations. Stud. Univ. Babes Bolyai Math. 54, 125–133 (2009)
    • 26. Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time...
    • 27. Takahasi, S.E., Miura, T., Miyajima, S.: On the Hyers–Ulam stability of the Banach space-valued differential equation f = λ f . Bull....
    • 28. Tang, S., Zada, A., Faisal, S., El-Sheikh, M.M.A., Li, T.: Stability of higher-order nonlinear impulsive differential equations. J. Nonlinear...
    • 29. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles. Fields and Media, Springer, HEP (2011)
    • 30. Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publishers, New York (1968)
    • 31. Viglialoro, G., Murcia, J.: A singular elliptic problem related to the membrane equilibrium equations. Int. J. Comput. Math. 90(10), 2185–2196...
    • 32. Wang, J., Feckan, M., Zhou, Y.: Ulams type stability of impulsive ordinary differential equation. J. Math. Anal. Appl. 35, 258–264 (2012)
    • 33. Wang, J., Linli, Lv., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer....
    • 34. Wang, J., Linli, Lv., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Catuto derivative. Electron....
    • 35. Wang, G., Zhou, M., Sun, L.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 21, 1024–1028 (2008)
    • 36. Wang, X., Rizwan, R., Lee, J.R., Zada, A., Shah, S.O.: Existence, uniqueness and Ulam’s stabilities for a class of implicit impulsive...
    • 37. Zada, A., Ali, S.: Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous...
    • 38. Zada, A., Ali, S., Li, Y.: Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral...
    • 39. Zada, A., Ali, W., Farina, S.: Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods...
    • 40. Zada, A., Ali, W., Park, C.: Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s...
    • 41. Zada, A., Rizwan, R., Xu, J., Fu, Z.: On implicit impulsive Langevin equation involving mixed order derivatives. Adv. Differ. Equ. (489)...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno