Ir al contenido

Documat


Variational Principle for Non-additive Neutralized Bowen Topological Pressure

  • Congcong Qu [1] ; Lan Xu [2]
    1. [1] Zhejiang Wanli University

      Zhejiang Wanli University

      China

    2. [2] Suzhou Vocational University

      Suzhou Vocational University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01032-w
  • Enlaces
  • Resumen
    • Ovadia and Rodriguez-Hertz (Neutralized local entropy and dimension bounds for invariant measures. arXiv:2302.10874v2) defined the neutralized Bowen open ball as Bn(x, e−nε) = {y ∈ X : d(T j (x), T j (y)) < e−nε, ∀0 ≤ j ≤ n − 1}.

      Yang et al. (Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1) introduced the notion of neutralized Bowen topological entropy of subsets by replacing the usual Bowen ball by neutralized Bowen open ball. And they established variational principles for this notion. In this note, we extend this notion to the non-additive neutralized Bowen topological pressure and establish the variational principle for non-additive potentials with tempered distortion. Besides, we establish a Billingsley type theorem for non-additive neutralized Bowen topological pressure.

  • Referencias bibliográficas
    • 1. Adler, R., Konheim, A., McAndrew, M.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965)
    • 2. Ban, J., Cao, Y., Hu, H.: The dimension of a non-conformal repeller and an average conformal repeller. Trans. Amer. Math. Soc. 362(2),...
    • 3. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergod. Theory...
    • 4. Barreira, L., Gelfert, K.: Multifractal analysis for Lyapunov exponents on nonconformal repellers. Commun. Math. Phys. 267, 393–418 (2006)
    • 5. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153, 401–414 (1971)
    • 6. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 7. Brin, M., Katok, A.: On local entropy, Geometric dynamics (Rio de Janeiro). Lecture Notes in Mathematics, vol. 1007, pp. 30–38. Springer,...
    • 8. Barreira, L., Pesin, Y., Schmeling, J.: Dimension and product structure of hyperbolic measures. Ann. Math. 149(3), 755–783 (1999)
    • 9. Cao, Y., Feng, D., Huang, W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)
    • 10. Cui,M., Li, Z.: A variational principle of the topological pressures for non-autonomous iterated function systems. Qual. Theory Dyn. Syst....
    • 11. Falconer, K.: A subadditive thermodynamic formalism for mixing repellers. J. Phys. A 21, 737–742 (1988)
    • 12. Falconer, K.: Bounded distortion and dimension for non-conformal repellers. Math. Proc. Camb. Phil. Soc. 115, 315–334 (1994)
    • 13. Feng, D., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)
    • 14. Huang, X., Lian, Y., Zhu, C.: A Billingsley-type theorem for the pressure of an action of an amenable group. Discrete Contin. Dyn. Syst....
    • 15. Huang, X., Li, Z., Zhou, Y.: A variational principle of topological pressure on subsets for amenable group actions. Discrete Contin. Dyn....
    • 16. Liu, L., Jiao, J., Zhou, X.: Unstable pressure of subsets for partially hyperbolic systems. Dyn. Syst. 37(4), 564–577 (2022)
    • 17. Ma, J., Wen, Z.: A Billingsley type theorem for Bowen entropy. C. R. Math. Acad. Sci. Paris Ser. I 346, 503–507 (2008)
    • 18. Ovadia, S.B., Rodriguez-Hertz, F.: Neutralized local entropy and dimension bounds for invariant measures, arXiv:2302.10874v2
    • 19. Ovadia, S.B., Rodriguez-Hertz, F.: Exponentially fast volume limits, arXiv:2308.0391
    • 20. Pesin, Y.: Dimension Theory in Dynamical Systems. Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, Contemporary...
    • 21. Pesin, Y., Pitskel’, B.: Topological pressure and the variational principle for non-compact sets. Funct. Anal. Appl. 18, 50–63 (1984)
    • 22. Ruelle, D.: Statistical mechanics on a compact set with Zvaction satisfying expansiveness and specification. Trans. Amer. Math. Soc. 185,...
    • 23. Sarkooh, J.: Variational principle for neutralized Bowen topological entropy on subsets of free semigroup actions. Proc. Indian Acad....
    • 24. Sarkooh, J., Ehsani, A., Pashaei, Z., Abdi, R.: Variational principle for neutralized Bowen topological entropy on subsets of non-autonomous...
    • 25. Tang, X., Cheng, W., Zhao, Y.: Variational principle for topological pressures on subsets. J. Math. Anal. Appl. 424, 1272–1285 (2015)
    • 26. Tian, X., Wu, W.: Unstable entropies and dimension theory of partially hyperbolic systems. Nonlinearity 35, 658–680 (2022)
    • 27. Walters, P.: A variational principle for the pressure of continuous transformations. Amer. J. Math. 97, 937–971 (1976)
    • 28. Walters, P.: An Introduction to Ergodic Theory. Springer, New York (1982)
    • 29. Wang, T.: Variational relations for metric mean dimension and rate distortion dimension. Discrete Contin. Dyn. Syst. 27, 4593–4608 (2021)
    • 30. Xiao, Q., Ma, D.: Variational principle of topological pressure of free semigroup actions for subsets. Qual. Theory Dyn. Syst. 21, 99...
    • 31. Xu, L., Zhou, X.: Variational principles for entropies of nonautonomous dynamical systems. J. Dyn. Differ. Equ. 30, 1053–1062 (2018)
    • 32. Yang, R., Chen, E., Zhou, X.: Variational principle for neutralized Bowen topological entropy, arXiv:2303.01738v1
    • 33. Zheng, D., Chen, E.: Bowen entropy for actions of amenable groups. Israel J. Math. 212, 895–911 (2016)
    • 34. Zhong, X., Chen, Z.: Variational principle for topological pressure on subsets of free semigroup actions. Acta Math. Sin. (Engl. Ser.)...
    • 35. Zhong, X., Chen, Z.: Variational principle for topological pressures on subsets. Nonlinearity 36, 1168– 1191 (2023)
    • 36. Zhang, R., Zhu, J.: The variational principle for the packing entropy of nonautonomous dynamical systems. Acta Math. Sci. 43(4), 1915–1924...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno