Ir al contenido

Documat


A Variational Principle of the Topological Pressures for Non-autonomous Iterated Function Systems

  • Mengxin Cui [1] ; Zhiming Li [1]
    1. [1] Northwest University

      Northwest University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, the definitions of measure-theoretic pressures, Pesin–Pitskel topological pressures and weighted topological pressures are introduced for non-autonomous iterated function systems. It is shown that Pesin–Pitskel topological pressures and weighted topological pressures coincide. The main purpose of this paper is to establish a variational principle between the Pesin–Pitskel topological pressure and the measure-theoretic pressure of Borel probability measures for non-autonomous iterated function systems.

  • Referencias bibliográficas
    • 1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965)
    • 2. Bi´s, A.: Entropies of a semigroup of maps. Discrete Contin. Dyn. Syst. 11, 639–648 (2004)
    • 3. Bi, A., Urba, M.: Some remarks on topological entropy of a semigroup of continuous maps. Cubo 8, 63–71 (2006)
    • 4. Barreira, L.: A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems. Ergodic Theory...
    • 5. Barreira, L.: Nonadditive thermodynamic formalism: equilibrium and Gibbs measures. Discrete Contin. Dyn. Syst. 16, 279–305 (2006)
    • 6. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)
    • 7. Cao, Y.L., Feng, D.J., Huang, W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)
    • 8. Federer, H.: Geometric Measure Theory. Springer, Cham (2014)
    • 9. Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263, 2228–2254 (2012)
    • 10. Ghane, F.H., Nazarian Sarkooh, J.: On topological entropy and topological pressure of non-autonomous iterated function systems. J. Korean...
    • 11. Huang, X.J., Li, Z.Q., Zhou, Y.H.: A variational principle of topological pressure on subsets for amenable group actions. Discrete Contin....
    • 12. Huang, X.J., Wen, X., Zeng, F.P.: Topological pressure of nonautonomous dynamical systems. Nonlinear Dyn. Syst. Theory 8, 43–48 (2008)
    • 13. Huang, W., Ye, X.D., Zhang, G.H.: Local entropy theory for a countable discrete amenable group action. J. Funct. Anal. 261, 1028–1082...
    • 14. Huang, W., Yi, Y.F.: A local variational principle of pressure and its applications to equilibrium states. Israel J. Math. 161, 29–74...
    • 15. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambrige University Press, Cambrige (1995)
    • 16. Kloeden, P.E.: Nonautonomous attractors of switching systems. Dyn. Syst. 21, 209–230 (2006)
    • 17. Kloeden, P.E.: Synchronization of nonautonomous dynamical systems. Electron. J. Diff. Equ. 39, 10 (2003)
    • 18. Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dynam. 4, 205–233 (1996)
    • 19. Mummert, A.: The thermodynamic formalism for almost-additive sequences. Discrete Contin. Dyn. Syst. 16, 435–454 (2006)
    • 20. Misiurewicz, M.: A short proof of the variational principle for a Zn +-action on a compact space. Bull. Acad. Polon. Sci. Se´r. Sci....
    • 21. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)
    • 22. Moulin Ollagnier, J., Pinchon, D.: The variational principle. Studia Math. 72, 151–159 (1982)
    • 23. Ma, D.K., Wu, M.: Topological pressure and topological entropy of a semigroup of maps. Discrete Contin. Dyn. Syst. 31, 545–557 (2011)
    • 24. Nazarian Sarkooh, J.: Variational principles on subsets of non-autonomous dynamical systems: topological pressure and topological entropy,...
    • 25. Nazarian Sarkooh, J., et al.: Variational principle for neutralized Bowen topological entropy on subsets of non-autonomous dynamical systems,...
    • 26. Pesin, Y.B.: Dimension Theory in Dynamical Systems: Contemporary Views and Applications. University of Chicago Press, USA (2008)
    • 27. Pesin, Y.B., Pitskel, B.S.: Topological pressure and the variational principle for noncompact sets. Funktsional. Anal. i Prilozhen. 18,...
    • 28. Ruelle, D.: Statistical mechanics on a compact set with Zν action satisfying expansiveness and specification. Trans. Amer. Math. Soc....
    • 29. Rasmussen, M., et al.: Transit times and mean ages for nonautonomous and autonomous compartmental systems. J. Math. Biol. 73, 1379–1398...
    • 30. Rempe-Gillen, L., Urba ´nski, M.: Non-autonomous conformal iterated function systems and Moran-set constructions. Trans. Amer. Math. Soc....
    • 31. Rodrigues, F.B., Varandas, P.: Specification and thermodynamical properties of semigroup actions. J. Math. Phys. 57, 052704 (2016)
    • 32. Tang, X., Cheng, W.C., Zhao, Y.: Variational principle for topological pressures on subsets. J. Math. Anal. Appl. 424, 1272–1285 (2015)
    • 33. Walters, P.: A variational principle for the pressure of continuous transformations. Amer. J. Math. 97, 937–971 (1975)
    • 34. Walters, P.: An Introduction to Ergodic Theory. Springer, Cham (2000)
    • 35. Xiao, Q., Ma, D.K.: Variational principle of topological pressure of free semigroup actions for subsets. Qual. Theory Dyn. Syst. 21(4),...
    • 36. Zhang, G.H.: Variational principles of pressure. Discrete Contin. Dyn. Syst. 24, 1409–1435 (2009)
    • 37. Zhao, Y., Cheng, W.C.: Coset pressure with sub-additive potentials. Stoch. Dyn. 14, 1350012 (2014)
    • 38. Zhong, X.F., Chen, Z.J.: Variational principle for topological pressure on subsets of free semigroup actions. Acta Math. Sin. 37, 1401–1414...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno