Ir al contenido

Documat


Measuring Individual Benefits of Medical Treatments Using Longitudinal Hospital Data with Non-Ignorable Missing Responses Caused by Patient Discharge: Application to the Study of Benefits of Pain Management Post Spinal Fusion

  • Autores: Xuan Zhang, Nikos Pantazis, Jose de Leon, Francisco J. Diaz
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 45, Nº. 2, 2022, págs. 275-300
  • Idioma: inglés
  • DOI: 10.15446/rce.v45n2.101597
  • Títulos paralelos:
    • Medición de los beneficios individuales de tratamientos médicos a partir de datos hospitalarios longitudinales con respuestas faltantes no ignorables causadas por la alta del paciente: Aplicación al estudio de los beneficios del tratamiento contra el dolor después de una fusión espinal
  • Enlaces
  • Resumen
    • español

      Resumen Los registros de salud electrónicos (RSE) suministran recursos valiosos para estudios longitudinales y para comprender los factores de riesgo asociados con pobres resultados clínicos. Sin embargo, estos podrían no contener seguimientos completos, y los datos faltantes podrían no ser al azar, debido a que el alta hospitalaria puede depender en parte de resultados clínicos esperados pero no registrados que ocurren después de dar de alta al paciente. Esta ausencia de datos no ignorables requiere métodos apropiados de análisis. Aquí estamos interesados en medir y analizar beneficios individuales de tratamientos médicos en pacientes consignados en bases de datos RSE. Proponemos un método para predecir beneficios individuales el cual maneja los datos faltantes debidos al alta hospitalaria. La respuesta clínica longitudinal de interés se modela junto con el tiempo de estadía en el hospital usando un modelo conjunto de efectos mixtos, y los beneficios individuales se predicen por medio de un enfoque frecuentista: el enfoque Bayesiano empírico. Nuestro enfoque es ilustrado evaluando los beneficios individuales del tratamiendo para el dolor en pacientes que fueron sometidos a cirugía de fusión espinal. Aquí examinamos la evolución de los beneficios individuales a través del tiempo mediante el cálculo de los percentiles muéstrales de los predictores de Bayes empíricos de los beneficios individuales. También comparamos estos percentiles con percentiles calculados mediante un enfoque Monte Cario. Los resultados mostraron que los predictores de Bayes empíricos de beneficios individuales no sólo permiten examinar beneficios en pacientes específicos sino que también reflejan confiablemente las tendencias poblacionales globales.

    • English

      Abstract Electronic health records (EHR) provide valuable resources for longitudinal studies and understanding risk factors associated with poor clinical outcomes. However, they may not contain complete follow-ups, and the missing data may not be at random since hospital discharge may depend in part on expected but unrecorded clinical outcomes that occur after patient discharge. These non-ignorable missing data requires appropriate analysis methods. Here, we are interested in measuring and analyzing individual treatment benefits of medical treatments in patients recorded in EHR databases. We present a method for predicting individual benefits that handles non-ignorable missingness due to hospital discharge. The longitudinal clinical outcome of interest is modeled simultaneously with the hospital length of stay using a joint mixed-effects model, and individual benefits are predicted through a frequentist approach: the empirical Bayesian approach. We illustrate our approach by assessing individual pain management benefits to patients who underwent spinal fusion surgery. By calculating sample percentiles of empirical Bayes predictors of individual benefits, we examine the evolution of individual benefits over time. We additionally compare these percentiles with percentiles calculated with a Monte Carlo approach. We showed that empirical Bayes predictors of individual benefits do not only allow examining benefits in specific patients but also reflect overall population trends reliably.

  • Referencias bibliográficas
    • Adogwa, O.,Parker, S. L.,Shau, D. N.,Mendenhall, S. K.,Bydon, A.,Cheng, J. S.,Asher, A. L.,McGirt, M. J. (2013). 'Preoperative Zung depression...
    • Albers, D. J.,Elhadad, N.,Claassen, J.,Perotte, R.,Goldstein, A.,Hripcsak, G. (2018). 'Estimating summary statistics for electronic health...
    • Anderson, J. T.,Haas, A. R.,Percy, R.,Woods, S. T.,Ahn, U. M.,Ahn, N. U. (2015). 'Clinical depression is a strong predictor of poor lumbar...
    • Andrews, N.,Cho, H. (2018). 'Validating effectiveness of subgroup identification for longitudinal data'. Statistics in Medicine. 98-106
    • Armero, C,Forte, A.,Perpiñan, H.,Sanahuja, M. J.,Agusti, S. (2018). 'Bayesian joint modeling for assessing the progression of chronic...
    • Arnold, L. M.,Palmer, R. H.,Gendreau, R. M.,Chen, W. (2012). 'Relationships among pain, depressed mood, and global status in fibromyalgia...
    • Botts, S.,Diaz, F. J.,Santoro, V.,Spina, E.,Muscatello, M. R.,Cogollo, M.,Castro, F. E.,de Leon, J. (2008). 'Estimating the effects of...
    • Cho, H.,Wang, P.,Qu, A. (2017). 'Personalized treatment for longitudinal data using unspecified random-effects model'. Statistica...
    • Crowther, M. J.,Abrams, K. R.,Lambert, P. C. (2012). 'Flexible parametric joint modelling of longitudinal and survival'. Statistics...
    • De Gruttola, V.,Tu, X. M. (1994). 'Modelling progression of CD4-lymphocyte count and its relationship to survival time'. Biometrics....
    • de Leon, J. (2012). 'Evidence-based medicine versus personalized medicine: are they enemies?'. Journal of Clinical Psychopharmacology....
    • Diaz, F. J. (2016). 'Measuring the individual benefit of a medical or behavioral treatment using generalized linear mixed-effects models'....
    • Diaz, F. J. (2018). 'Construction of the design matrix for generalized linear mixed-effects models in the context of clinical trials of...
    • Diaz, F. J. (2019). 'Estimating individual benefits of medical or behavioral treatments in severely ill patients'. Statistical Methods...
    • Diaz, F. J. (2021). 'Using population crossover trials to improve the decision process regarding treatment individualization in N-of-1...
    • Diaz, F. J.,Berg, M. J.,Krebill, R.. (2013). 'Random-effects linear modeling and sample size tables for two special crossover designs...
    • Diaz, F. J.,Cogollo, M. R.,Spina, E.,Santoro, V.,Rendon, D. M.,de Leon, J. (2012). 'Drug Dosage Individualization Based on a Random-Effects...
    • Diaz, F. J.,de Leon, J. (2013). 'The mathematics of drug dose individualization should be built with random effects linear models'....
    • Diaz, F. J.,Eap, C. B.,Ansermot, N.,Crettol, S.,Spina, E.,de Leon, J. (2014). 'Can valproic acid be an inducer of clozapine metabolism?'....
    • Diaz, F. J.,Rivera, T. E.,Josiassen, R. C.,de Leon, J. (2007). 'Individualizing drug dosage by using a random intercept linear model'....
    • Diaz, F. J.,Santoro, V.,Spina, E.,Cogollo, M.,Rivera, T. E.,Botts, S.,de Leon, J. (2008). 'Estimating the size of the effects of co-medications...
    • Diaz, F. J.,Yeh, H.-W.,de Leon, J. (2012). 'Role of Statistical Random-Effects Linear Models in Personalized Medicine'. Current Pharmacogenomics...
    • Edelstein, C. L. (2008). 'Biomarkers of acute kidney injury'. Advances in Chronic Kidney Disease. 222
    • Frees, E. W. (2004). Longitudinal and Panel Data. Cambridge University Press. Cambridge.
    • Gaudin, D.,Krafcik, B. M.,Mansour, T. R.,Alnemari, A. (2017). 'Considerations in spinal fusion surgery for chronic lumbar pain: psychosocial...
    • Gerbershagen, H. J.,Pogatzki-Zahn, E.,Aduckathil, S.,Peelen, L. M.,Kappen, T. H.,van Wijck, A. J.,Kalkman, C. J.,Meissner, W. (2014). 'Procedure-specific...
    • Gewandter, J. S.,McDermott, M. P.,He, H.,Gao, S.,Cai, X.,Farrar, J. T.,Katz, N. P.,Markman, J. D.,Senn, S.,Turk, D. C.,Dworkin, R. H. (2019)....
    • Greden, J. F. (2009). 'Treating depression and pain'. Journal of Clinical Psychiatry. 70.
    • Gronski, L.,Martinson, W.,Singh, K. P.,Ryan, J. (2012). 'Utility of daily troponin orders for identifying acute myocardial infarction...
    • Hedeker, D.,Gibbons, R. D. (2006). Longitudinal Data Analysis. Wiley-Interscience. Hoboken, NJ.
    • Hickey, G. L.,Philipson, P.,Jorgensen, A.,Kolamunnage-Dona, R. (2018). 'joineRML: a joint model and software package for time-to-event...
    • Ibrahim, J. G.,Molenberghs, G. (2009). 'Missing data methods in longitudinal studies: a review'. Test (Madr). 1-43
    • Johnson, N. L. (1949). 'Systems of Frequency Curves Generated by Methods of Translation'. Biometrika. 149
    • Laird, N. M. (1998). 'Missing data in longitudinal studies'. Statistics in Medicine. 305
    • Lesaffre, E.,Rizopoulos, D.,Tsonaka, R. (2007). 'The logistic transform for bounded outcome scores'. Biostatistics. 72-85
    • Little, R. J. A.,Rubin, D. B. (2002). Statistical Analysis with Missing Data, Second Edition. Wiley. New York.
    • Lotzke, H.,Jakobsson, M.,Brisby, H.,Gutke, A.,Hágg, O.,Smeets, R.,den Hollander, M.,Olsson, L. E.,Lundberg, M. (2016). 'Use of the PREPARE...
    • Miksad, R. A.,Abernethy, A. P. (2018). 'Harnessing the power of real-world evidence (RWE): A checklist to ensure regulatory-grade Data...
    • Pantazis, N.,Touloumi, G. (2010). 'Analyzing longitudinal data in the presence of informative drop-out: The jmrel command'. Stata...
    • Papageorgiou, G.,Mauff, K.,Tomer, A.,Rizopoulos, D. (2019). 'An overview of joint modeling of time-to-event and longitudinal outcomes'....
    • Ruberg, S. J.,Chen, L.,Wang, Y. (2010). 'The mean does not mean as much anymore: finding sub-groups for tailored therapeutics'. Clinical...
    • Schluchter, M. D. (1992). 'Methods for the analysis of informatively censored longitudinal data'. Statistics in Medicine. 1861
    • Schluchter, M. D.,Piccorelli, A. V. (2019). 'Shared parameter models for joint analysis of longitudinal and survival data with left truncation...
    • Senn, S. (2016). 'Mastering variation: variance components and personalised medicine'. Statistics in Medicine. 966
    • Shardell, M.,Ferrucci, L. (2018). 'Joint mixed-effects models for causal inference with longitudinal data'. Statistics in Medicine....
    • Shaw, A. D.,Mythen, M. G.,Shook, D.,Hayashida, D. K.,Zhang, X.,Skaar, J. R.,Iyengar, S. S.,Munson, S. H. (2018). 'Pulmonary artery catheter...
    • Shirafkan, H.,Mahmoudi-Gharaei, J.,Fotouhi, A.,Mozaffarpur, S. A.,Yaseri, M.,Hoseini, M. (2020). 'Individualizing the dosage of Methylphenidate...
    • Touloumi, G.,Pocock, S. J.,Babiker, A. G.,Darbyshire, J. H. (1999). 'Estimation and comparison of rates of change in longitudinal studies...
    • Trivedi, M. H. (2004). 'The link between depression and physical symptoms'. Primary Care Companion of the Journal of Clinical Psychiatry....
    • Urman, R. D.,Boing, E. A.,Pham, A. T.,Khangulov, V.,Fain, R.,Nathanson, B. H.,Zhang, X.,Wan, G. J.,Lovelace, B.,Chillo, J. (2018). 'Improved...
    • Wang, Z.,Diaz, F. J. (2020). 'A graphical approach to assess the goodness-of-fit of random-effects linear models when the goal is to measure...
    • Weinmann, C,Komann, M.,Meissner, W. (2017). 'Tough cookies: the older the patients, the more pain tolerating?'. European Journal of...
    • Woodward, M. (2014). Epidemiology: Study Design and Data Analysis, Third Edition. Chapman & Hall/CRC. Boca Raton, FL.
    • Zhang, X.,de Leon, J.,Crespo-Facorro, B.,Diaz, F. J. (2020). 'Measuring individual benefits of psychiatric treatment using longitudinal...
    • Zhu, X.,Qu, A. (2016). 'Individualizing drug dosage with longitudinal data'. Statistics in Medicine. 4474
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno