Aguinaldo Robinson de Souza, Emília Mendonça Rosa Marques
Em meados do século XIX, os matemáticos franceses Briot e Bouquet propuseram um intrigante método gráfico para resolução de equações cúbicas “depressed” – equações do 3º grau que não possuem o termo quadrático. A construção geométrica proposta é simples, entretanto baseia-se numa álgebra bastante engenhosa. Propomos aqui a comprovação e experimentação gráfica do método através de uma sequência didática utilizando o software GeoGebra. Apresentamos ainda o engenhoso desenvolvimento algébrico que resultou nesse método gráfico de determinação de raízes reais para uma equação cúbica do tipo x3 + px + q = 0 onde p e q são números reais. O método afirma que tais soluções se resumem nas abscissas dos pontos de interseção da parábola y = x2 com a circunferência de centro em C(-q/2, 1-p/2) e que contém a origem.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados