Ir al contenido

Documat


Qualitative Structures Near a Degenerate Fixed Point of a Discrete Ratio-Dependent Predator–Prey System

  • Jinling Yang [1] ; Shengfu Deng [1]
    1. [1] Huaqiao University

      Huaqiao University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01052-6
  • Enlaces
  • Resumen
    • This paper investigates the qualitative structures of a discrete ratio-dependent predator– prey model near a degenerate fixed point whose eigenvalues are ±1. By the normal form theory, Picard iteration and Takens’s theorem, this model is transformed into an ordinary differential system. Then the qualitative structures of this differential system near the highly degenerate equilibrium are analyzed with the blowing-up method, which yields the ones of the discrete model near the fixed point by the conjugacy between the discrete model and the time-one mapping of the vector field.

  • Referencias bibliográficas
    • 1. Álvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifur. Chaos Appl. Sci. Eng. 21, 3103–3118 (2011)
    • 2. Aulisa, E., Jang, S.R.J.: Continuous-time predator-prey systems with Allee effects in the prey. Math. Comput. Simul. 105, 1–16 (2014)
    • 3. Baigent, S., Hou, Z., Elaydi, S., Balreira, E.C., Luís, R.: A global picture for the planar Ricker map: convergence to fixed points and...
    • 4. Balreira, C.E., Elaydi, S., Luís, R.: Local stability implies global stability for the planar Ricker competition model. Discrete Contin....
    • 5. Chakraborty, P., Sarkar, S., Ghosh, U.: Stability and bifurcation analysis of a discrete prey-predator model with sigmoid functional response...
    • 6. Chen, Q.L., Teng, Z.D.: Codimension-two bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response. J....
    • 7. Chen, Q.L., Teng, Z.D., Wang, F.: Fold-flip and strong resonance bifurcations of a discrete-time mosquito model. Chaos, Solitons Fractals...
    • 8. Cheng, L.F., Cao, H.J.: Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee effect. Commun. Nonlinear...
    • 9. Cheng, Q., Zhang, Y.L., Deng, S.F.: Qualitative analysis of a degenerate fixed point of a discrete predator-prey model with cooperative...
    • 10. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, New York (1994)
    • 11. Din, Q.: Dynamics and chaos control for a novel model incorporating plant quality index and larch budmoth interaction. Chaos, Solitons...
    • 12. Din, Q.: Complex dynamical behavior and control of a discrete ecological model. J. Vib. Control 29, 5270–5288 (2023)
    • 13. Din, Q., Khan, M.I.: A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control. Qual. Theory...
    • 14. Din, Q., Zulfiqar, M.A.: Qualitative behavior of a discrete predator-prey system under fear effects. Ze. Naturforsch. A 77, 1023–1043...
    • 15. Dumortier, F., Rodrigues, P.R., Roussarie, R.: Germs of Diffeomorphisms in the Plane. Springer, New York (1981)
    • 16. Fei, L.Z., Chen, X.W., Han, B.S.: Bifurcation analysis and hybrid control of a discrete-time predatorprey model. J. Differ. Equ. Appl....
    • 17. Ishaque, W., Din, Q., Khan, K.A., Mabela, R.M.: Dynamics of predator-prey model based on fear effect with bifurcation analysis and chaos...
    • 18. Kulakov, M., Neverova, G., Frisman, E.: The Ricker competition model of two species: Dynamic modes and phase multistability. Mathematics...
    • 19. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
    • 20. Kuznetsov, Y.A., Meijer, H.G., van Veen, L.: The fold-flip bifurcation. Int. J. Bifur. Chaos Appl. Sci. Eng. 14, 2253–2282 (2004)
    • 21. Lei, C., Han, X.L., Wang, W.M.: Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor. Math....
    • 22. Levi, M., Zhou, J.: Arnold tongues in area-preserving maps. Arch. Ration. Mech. Anal. 247, 32 (2023)
    • 23. Li, X.Y., Liu, Y.Q.: Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system. Qual. Theory...
    • 24. Liu, P., Elaydi, S.N.: Discrete competitive and cooperative models of Lotka-Volterra type. J. Comput. Anal. Appl. 3, 53–73 (2001)
    • 25. Luís, R., Elaydi, S., Oliveira, H.: Stability of a Ricker-type competition model and the competitive exclusion principle. J. Biol. Dyn....
    • 26. May, R.M.: Biological populations with non-overlapping generations: Stable points, stable cycles, and chaos. Science 186, 645–647 (1974)
    • 27. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response....
    • 28. Revel, G., Alonso, D.M., Moiola, J.L.: A gallery of oscillations in a resonant electric circuit: Hopf-Hopf and fold-flip interactions....
    • 29. Ryals, B.: Dynamics of the degenerate 2D Ricker equation. Math. Methods Appl. Sci. 42, 553–566 (2019)
    • 30. Ryals, B., Sacker, R.J.: Global stability in the 2D Ricker equation. J. Differ. Equ. Appl. 11, 1068–1081 (2015)
    • 31. Ryals, B., Sacker, R.J.: Global stability in the 2D Ricker equation revisited. Discrete Contin. Dyn. Syst. Ser. B 22, 585–604 (2017)
    • 32. Salman, S.M., Yousef, A.M., Elsadany, A.A.: Stability, bifurcation analysis and chaos control of a discrete predator-prey system with...
    • 33. Smith, H.L.: Planar competitive and cooperative difference equations. J. Differ. Equ. Appl. 3, 335–357 (1998)
    • 34. Shu, Q., Xie, J.L.: Stability and bifurcation analysis of discrete predator-prey model with nonlinear prey harvesting and prey refuge....
    • 35. Zhang, Y.L., Cheng, Q., Deng, S.F.: Qualitative structure of a discrete predator-prey model with nonmonotonic functional response. Discrete...
    • 36. Zhang, Z.F., Ding, T.R., Huang, W.Z., Dong, Z.X.: Qualitative Theory of Differential Equations. American Mathematica Society, Providence...
    • 37. Zhang, X., Zhang, Q.L., Sreeram, V.: Bifurcation analysis and control of a discrete harvested preypredator system with Beddington-DeAngelis...
    • 38. Zhang, J., Zhong, J.Y.: Qualitative structures of a degenerate fixed point of a Ricker competition model. J. Differ. Equ. Appl. 25, 430–454...
    • 39. Zhong, J.Y., Deng, S.F.: Two codimension-two bifurcations of a second-order difference equation from macroeconomics. Discrete Contin....
    • 40. Zhong, J.Y., Zhang, J.: The stability of a degenerate fixed point for Guzowska-Luís-Elaydi model. J. Differ. Equ. Appl. 24, 409–424 (2018)
    • 41. Zhuo, X.L., Zhang, F.X.: Stability for a new discrete ratio-dependent predator-prey system. Qual. Theory Dyn. Syst. 17, 189–202 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno