Ir al contenido

Documat


Stability for a New Discrete Ratio-Dependent Predator–Prey System

  • Xiang-Lai, Zhuo [1] ; Feng-Xue, Zhang [1]
    1. [1] Shandong University of Science and Technology

      Shandong University of Science and Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 17, Nº 1, 2018, págs. 189-202
  • Idioma: inglés
  • DOI: 10.1007/s12346-017-0228-1
  • Enlaces
  • Resumen
    • The stability of a new two-species discrete ratio-dependent predator–prey system is considered. By using the linearization method, we obtain some sufficient conditions for the local stability of the positive equilibria. We also obtain a new sufficient condition to ensure that the positive equilibrium is globally asymptotically stable by using an iteration scheme and the comparison principle of difference equations, which generalizes what paper (Chen and Zhou in J Math Anal Appl 27:7358–7366, 2003) has done. The method given in this paper is new and very resultful comparing with articles (Damgaard in J Theor Biol 227:197–203, 2004; Edmunds in Theor Popul Biol 72:379–388, 2007; Fan and Wang in Math Comput Model 35:951–961, 2002; Muroya in J Math Anal Appl 330:24–33, 2007; Huo and Li in Appl Math Comput 153:337–351, 2004; Liao et al. in Appl Math Comput 190:500–509, 2007) and it can also be applied to study other global asymptotic stability for general multiple species discrete population systems. At the end of this paper, we present two open questions.

  • Referencias bibliográficas
    • 1. Agiza, N.A., Elabbasy, E.M., El-Metwally, H., Elsadany, A.A.: Chaotic dynamics of a discrete pery– predator model with Holling type II....
    • 2. Basson, M., Fogarty, M.J.: Harvesting in discrete-time predator–prey systems. Math. Biosci. 141, 41–74 (1997)
    • 3. Celik, C., Duman, O.: Allee effect in a discrete-time predator-prey system. Chaos Solitons Fractals 40, 1956–1962 (2009)
    • 4. Chen, L.: Mathematical Models and Methods in Ecology. Science Press, Beijing (1988). (in Chinese)
    • 5. Saito, Y., Hara, T., Ma, W.: Harmless delays for permanence and impersistence of a Lotka–Volterra discrete predator–prey system. Nonlinear...
    • 6. Solis, F.J.: Self-limitation in a discrete predator–prey model. Math. Comput. Model. 48, 191–196 (2008)
    • 7. Willox, R., Ramani, A., Grammaticos, B.: A discrete-time model for cryptic oscillations in predator– prey systems. Phys. D 238, 2238–2245...
    • 8. Yakubu, A.A.: Prey dominance in discrete predator–prey systems with a prey refuge. Math. Biosci. 144, 155–178 (1997)
    • 9. Huo, H.F., Li, W.T.: Stable periodic solution of the discrete periodic Leslie–Gower predator–prey model. Math. Comput. Model. 40, 261–269...
    • 10. Damgaard, C.: Dynamics in a discrete two-species competition model: coexistence and overcompensation. J. Theor. Biol. 227, 197–203 (2004)
    • 11. Edmunds, J.L.: Multiple attractors in a discrete competition model. Theor. Popul. Biol. 72, 379–388 (2007)
    • 12. Chen, G., Teng, Z., Zengyun, Hu: Analysis of stability for a discrete ratio-dependent predator–prey system. Indian J. Pure Appl. Math....
    • 13. Fan, Y.H., Li, W.T.: Permanence for a delayed discrete ratio-dependent predator–prey system with Holling type functional response. J....
    • 14. Fan, M., Wang, K.: Periodic solutions of a discrete time nonautonomous ratio dependent predator–prey system. Math. Comput. Model. 35,...
    • 15. Fazly, M., Hesaaraki, M.: Periodic solutions for discrete time predator–prey system with monotone functional responses. C. R. Acad. Sci....
    • 16. Muroya, Y.: Persistence and global stability in discrete models of Lotka–Volterra type. J. Math. Anal. Appl. 330, 24–33 (2007)
    • 17. Chen, Y., Zhou, Z.: Stable periodic solution of a discrete periodic Lotka–Volterra competition system. J. Math. Anal. Appl. 27, 7358–7366...
    • 18. Hutson, V., Moran, W.: Persistence of species obeying difference equations. J. Math. Biol. 15, 203–213 (1982)
    • 19. Huo, H.F., Li, W.T.: Existence and global stability of periodic solutions of a discrete predator–prey system with delays. Appl. Math....
    • 20. Kon, R.: Permanence of discrete-time Kolmogorov systems for two soecies and saturated fixed points. J. Math. Biol. 48, 57–81 (2004)
    • 21. Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predator–prey system. Chaos Solitons Fractals 27, 259–277 (2006)
    • 22. Liao, X., Zhou, S., Chen, Y.: On permanence and global stability in a general Gilpin–Ayala competition predator–prey discrete system....
    • 23. Shih, C.-W., Tseng, J.-P.: Global consensus for discrete-time competitive systems. Chaos Solitons Fractals 41, 302–310 (2009)
    • 24. Chan, D.M., Franke, J.E.: Probabilities of extinction, weak extinction permanence, and mutual exclusion in discrete, competitive Lotka–Volterra...
    • 25. Yakubu, A.-A.: The effects of planting and harvesting on endangered species in discrete competitive systems. Math. Biosci. 126, 1–20 (1995)
    • 26. Chan, D.M., Franke, J.E.: Multiple extinctions in a discrete competitive system. Nonlinear Anal. Real World Appl. 2, 75–91 (2001)
    • 27. Bischi, G.I., Tramontana, F.: Three-dimensional discrete-time Lotka–Volterra models with an application to industrial clusters. Commun....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno