Ir al contenido

Documat


Relative Controllability and Hyers–Ulam Stability of Riemann–Liouville Fractional Delay Differential System

  • Wangmin An [1] ; Danfeng Luo [1] ; Jizhao Huang [1]
    1. [1] Guizhou University

      Guizhou University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01046-4
  • Enlaces
  • Resumen
    • In this work, we focus on the relative controllability and Hyers–Ulam stability of Riemann–Liouville fractional delay differential system of order α ∈ (1, 2). Firstly, for the linear system based on Mittag-Laffler matrix function, we define a controllability Grammian matrix to judge whether the system is relatively controllable. Additionally, with the aid of Krasnoselskii’s fixed point theorem, sufficient conditions for the relative controllability of the corresponding semilinear system is also studied. Furthermore, we used Grönwall’s inequality to investigate Hyers–Ulam stability for Riemann–Liouville fractional semilinear delay differential equations. Lastly, three instances are provided to verify that our theoretical results are accurate.

  • Referencias bibliográficas
    • 1. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 5(2), 102–119 (1960)
    • 2. Jothimani, K., Kaliraj, K., Panda, S.K., et al.: Results on controllability of non-densely characterized neutral fractional delay differential...
    • 3. Dineshkumar, C., Sooppy, N.K., Udhayakumar, R., et al.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional...
    • 4. Zhou, Y., Vijayakumar, V., Ravichandran, C., et al.: Controllability results for fractional order neutral functional differential inclusions...
    • 5. Panneer, S.A., Govindaraj, V.: Controllability of fractional dynamical systems having multiple delays in control with Ψ-Caputo fractional...
    • 6. Selvam, A.P., Vellappandi, M., Govindaraj, V.: Controllability of fractional dynamical systems with Ψ-Caputo fractional derivative. Phys....
    • 7. Balachandran, K., Govindaraj, V., Rodríguez-Germá, L., et al.: Controllability results for nonlinear fractional-order dynamical systems....
    • 8. Vijayakumar, V., Ravichandran, C., Murugesu, R., et al.: Controllability results for a class of fractional semilinear integro-differential...
    • 9. Tajadodi, H., Khan, A., Francisco, Gómez-Aguilar J., et al.: Optimal control problems with AtanganaBaleanu fractional derivative. Optimal...
    • 10. Shah, K., Abdalla, B., Abdeljawad, T., et al.: A fractal-fractional order model to study multiple sclerosis: a chronic disease. Fractals...
    • 11. Abdulwasaa, M.A., Kawale, S.V., Abdo, M.S., et al.: Statistical and computational analysis for corruption and poverty model using Caputo-type...
    • 12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
    • 13. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
    • 14. Zhou, Y., Wang, J.R., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)
    • 15. Khan, H., Alzabut, J., Baleanu, D., et al.: Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled...
    • 16. Khan, H., Alzabut, J., Shah, A., et al.: On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects...
    • 17. Begum, R., Tunç, O., Khan, H., et al.: A fractional order Zika virus model with Mittag-Leffler kernel. Chaos Solitons Fractals 146, 110898...
    • 18. Panneer, S.A., Govindaraj, V.: Reachability of fractional dynamical systems with multiple delays in control using Ψ-Hilfer pseudo-fractional...
    • 19. Vellappandi, M., Govindaraj, V.: Observability, reachability, trajectory reachability and optimal reachability of fractional dynamical...
    • 20. Sikora, B., Klamka, J.: Constrained controllability of fractional linear systems with delays in control. Syst. Control Lett. 106, 9–15...
    • 21. Khusainov, D.Y., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. Appl. Mech. 41, 210–221 (2005)
    • 22. Li, M.M., Feˇckan, M., Wang, J.R.: Finite time stability and relative controllability of second order linear differential systems with...
    • 23. Li, M.M., Feˇckan, M., Wang, J.R.: Representation and finite time stability of solution and relative controllability of conformable type...
    • 24. Mahmudov, N.I.: Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations....
    • 25. You, Z.L., Feˇckan, M., Wang, J.R.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag-Leffler...
    • 26. Li, M.M., Debbouche, A., Wang, J.R.: Relative controllability in fractional differential equations with pure delay. Math. Methods Appl....
    • 27. You, Z.L., Wang, J.R., O’Regan, D.: Relative controllability of delay differential systems with impulses and linear parts defined by permutable...
    • 28. Wang, J.R., Luo, Z.J., Feˇckan, M.: Relative controllability of semilinear delay differential systems with linear parts defined by permutable...
    • 29. You, Z.L., Wang, J.R., O’Regan, D.: Exponential stability and relative controllability of nonsingular delay systems. Bull. Braz. Math....
    • 30. Li, M.M., Wang, J.R.: Representation of solution of a Riemann–Liouville fractional differential equation with pure delay. Appl. Math....
    • 31. Li, M.M., Wang, J.R.: Finite time stability and relative controllability of Riemann–Liouville fractional delay differential equations....
    • 32. Wang, J.R., Lv, L., Zhou, Y.: Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron....
    • 33. Wang, J.R., Lv, L.L., Zhou, Y.: New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer....
    • 34. Wang, J.R., Zhou, Y., Feˇckan, M.: Nonlinear impulsive problems for fractional differential equations and Ulam stability. Comput. Math....
    • 35. Wang, J.R., Zhang, Y.: Ulam–Hyers–Mittag-Leffler stability of fractional-order delay differential equations. Optimization 63(8), 1181–1190...
    • 36. Khan, S., Shah, K., Debbouche, A., et al.: Solvability and Ulam–Hyers stability analysis for nonlinear piecewise fractional cancer dynamic...
    • 37. Benchohra, M., Bouriah, S., Nieto, J.J.: Existence and Ulam stability for nonlinear implicit differential equations with Riemann–Liouville...
    • 38. Cuong, D.X.: On the Hyers–Ulam stability of Riemann–Liouville multi-order fractional differential equations. Afr. Mat. 30(7–8), 1041–1047...
    • 39. Fan, Z.B., Pan, R.J.: Analyses of solutions of Riemann–Liouville fractional oscillatory differential equations with pure delay. Math....
    • 40. Almarri, B., Wang, X.T., Elshenhab, A.M.: Controllability and Hyers–Ulam stability of fractional systems with pure delay. Fractal Fract....
    • 41. Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, Cambridge (1998)
    • 42. Kavitha, W.W., Vijayakumar, V., Udhayakumar, R., et al.: Existence and controllability of nonlocal mixed Volterra–Fredholm type fractional...
    • 43. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., et al.: A note on the approximate controllability of Sobolev type fractional stochastic...
    • 44. Johnson, M., Raja, M.M., Vijayakumar, V., et al.: Optimal control results for impulsive fractional delay integrodifferential equations...
    • 45. Ma, Y.K., Raja, M.M., Shukla, A., Vijayakumar, V., et al.: New results on approximate controllability of fractional delay integrodifferential...
    • 46. Kavitha, K., Nisar, K.S., Shukla, A., et al.: A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno