Ir al contenido

Documat


Limit Cycles in Discontinuous Planar Piecewise Differential Systems with Multiple Nonlinear Switching Curves

  • Min Wang [1] ; Lihong Huang [3] ; Jiafu Wang [2]
    1. [1] Hunan University

      Hunan University

      China

    2. [2] Changsha University of Science and Technology

      Changsha University of Science and Technology

      China

    3. [3] Changsha University & Hunan University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01014-y
  • Enlaces
  • Resumen
    • In this paper, we investigate the maximum number of limit cycles that can bifurcate from the periodic annulus of the linear center for discontinuous piecewise quadratic polynomial differential systems with four zones separated by two nonlinear curves . By analyzing the first order averaged function, we prove that at most 7 crossing limit cycles can produce from periodic annulus of the linear center, and the upper bound is reached. In addition, under particular conditions, we obtain that at least 8 crossing limit cycles can bifurcate from periodic annulus in this class of systems by using the second order averaged function. Our results show that multiple switching curves increase the number of crossing limit cycles in comparison with the case where there is only a single switching curve.

  • Referencias bibliográficas
    • 1. Andrade, K.D.S., Cespedes, O.A.R., Cruz, D.R., Novaes, D.D.: Higher order Melnikov analysis for planar piecewise linear vector fields with...
    • 2. Arnold, V.I.: Ten prolbems. Adv. Soviet Math. 1, 1–8 (1990)
    • 3. Bastos, J.L.R., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold....
    • 4. Bernardo, M.D., Champneys, A.R., Budd, C.J., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London...
    • 5. Braga, D.D.C., Mello, L.F.: More than three limit cycles in discontinuous piecewise linear differential systems with two zones in the plane....
    • 6. Browder, F.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1–39 (1983)
    • 7. Buic˘a, A.: On the equivalence of the Melnikov functions method and the averaging method. Qual. Theory Dyn. Syst. 16, 547–560 (2017)
    • 8. Buzzi, C., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 33, 3915–3936 (2013)
    • 9. Chen, X., Han, M.: A linear estimate of the number of limit cycles for a piecewise smooth nearHamiltonian system. Qual. Theory Dyn. Syst....
    • 10. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht (1988)
    • 11. Guo, Z., Llibre, J.: Limit cycles of a class of discontinuous piecewise differential systems separated by the curve y = xn via averaging...
    • 12. Guo, Z., Llibre, J.: Non-equivalence between the Melnikov and the averaging methods for nonsmooth differential systems. Qual. Theory Dyn....
    • 13. Han, M.: On the maximal number of periodic solution of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7,...
    • 14. Han,M., Romanovski, V.G., Zhang, X.: Equivalence of theMelnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15,...
    • 15. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)
    • 16. Hu, N., Du, Z.: Bifurcation of periodic orbits emanated from a vertex in discontinuous planar systems. Commun. Nonlinear Sci. Numer. Simul....
    • 17. Huang, L., Wang, J.: Models Described by Differential Equations with Discontinuous Right Hand Sides and Their Dynamics. Science Press,...
    • 18. Ilyashenko, Y.: Centenial history of Hilbert’s 16 problem. Bull. Am. Math. Soc. 39, 301–354 (2002)
    • 19. Karlin, S.J., Studden, W.J.: Tchebycheff systems: With Applications in Analysis and Statistics. Pure Appl. Math. Interscience Publishers,...
    • 20. Li, J.: Hilbert’s 16th problem and bifurcations of planar polynomial cevtor fields. Int. J. Bifur. Chaos Appl. Sci. Eng. 13, 47–106 (2003)
    • 21. Li, T., Llibre, J.: Limit cycles of piecewise polynomial differential systems with the discontinuity line xy=0. Commun. Pure Appl....
    • 22. Li, W., Huang, L., Wang, J.: Dynamic analysis of discontinuous plant disease models with a non-smooth separation line. Nonlin. Dyn. 99,...
    • 23. Liu, W., Han, M.: Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications. Discrete Contin....
    • 24. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differ. Equ. 258, 4007–4032...
    • 25. Llibre, J., Novaes, D.D., Rodrigues, C.A.B.: Averaging theory at any order for computing limit cycles of discontinuous piecewise differential...
    • 26. Llibre, J., Novaes, D.D., Teixeira, M.A.: Limit cycles bifurcating from the periodic orbits of a discontinuous piecewise linear differentiable...
    • 27. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244...
    • 28. Llibre, J., Mereu, A.C.: Limit cycles for discontinuous quadratic differential systems with two zones. J. Math. Anal. Appl. 413, 763–775...
    • 29. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)
    • 30. Liu, X., Han, M.: Bifurcation of limit cycles by perturbating piecewise Hamiltonian systems. J. Bifur. Chaos Appl. Sci. Eng. 20, 1379–1390...
    • 31. Novaes, D.D., Ponce, E.: A simple solution to the Braga-Mello conjecture. Int. J. Bifur. Chaos Appl. Sci. Eng. 25, 1550009 (2015)
    • 32. Novaes, D.D., Torregrosa, J.: On extended Chebyshev systems with positive accuracy. J. Math. Anal. Appl. 448, 171–186 (2017)
    • 33. Wang, J., Huang, W., Huang, L.: Global dynamics and bifurcation for a discontinuous oscillator with irrational nonlinearity. Commun. Nonlinear...
    • 34. Yang, J., Zhang, E., Liu, M.: Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through...
    • 35. Yang, J.: Limit cycles appearing from the perturbation of differential systems with multiple switching curves. Chaos, Solitons Fractals...
    • 36. Zou, L., Zhao, L.: The cyclicity of a class of global nilpotent center under perturbations of piecewise smooth polynomials with four zones....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno