Ir al contenido

Documat


Existence of Optimal Control for a Class of Kirchhoff–Poisson System

  • Ying Zhou [1] ; Wei Wei [2] ; Yue Wang [3] ; Jun Lei [1]
    1. [1] Guizhou University
    2. [2] Guizhou University, Guizhou Education University
    3. [3] Guizhou Minzu University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01019-7
  • Enlaces
  • Resumen
    • We discuss an optimal control problem for the Kirchhoff–Poisson type controlled system. By using variational methods and embedding theorem, we obtain the existence uniqueness of solutions to the state equation and existence of an optimal control.

  • Referencias bibliográficas
    • 1. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
    • 2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrodinger–Poisson problem. Commun. ¨ Contemp. Math. 10, 391–404 (2008)
    • 3. Boumaza, N., Boulaaras, S.: General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl....
    • 4. Bouizem, Y., Boulaaras, S., Djebbar, B.: Some existence results for an elliptic equation of Kirchhofftype with changing sign data and a...
    • 5. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrodinger–Maxwell equations. Topol. Meth- ¨ ods Nonlinear Anal. 11, 283–293 (1998)
    • 6. Ba, Z., He, X.M.: Solutions for a class of Schrodinger–Poisson system in bounded domains. J. Appl. ¨ Math. Comput. 51, 287–297 (2016)
    • 7. Boulaaras, S.: Existence of positive solutions for a new class of Kirchhoff parabolic systems. Rocky Mountain J. Math. 50, 445–454 (2020)
    • 8. Boulaaras, S.: Some existence results for a new class of elliptic Kirchhoff equation with logarithmic source terms. J. Intell. Fuzzy Syst....
    • 9. Batkam, C.J., Junior, J.R.S.: Schro¨dinger–Kirchhoff–Poisson type systems. Commun. Pure Appl. Anal. 15, 429–444 (2016)
    • 10. Che, G.F., Chen, H.B.: Infinitely many solutions for Kirchhoff equations with sign-changing potential and Hartree nonlinearity. Mediterr....
    • 11. Chai, G.Q., Liu, W.M.: Least energy sign-changing solutions for Kirchhoff–Poisson systems. Bound. Value Probl. 2019, 1–25 (2019)
    • 12. Chen, S.J., Tang, C.L.: Multiple solutions for nonhomogeneous Schrodinger–Maxwell and Klein– ¨ Gordon–Maxwell equations on R3. NoDEA Nonlinear...
    • 13. Delgado, M., Figueiredo, G.M., Gayte, I., Morales-Rodrigo, C.: An optimal control problem for a Kirchhoff-type equation. ESAIM Control...
    • 14. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)
    • 15. De, A., José, C., Clemente, R., Ferraz, D.: Existence of infinitely many small solutions for sublinear fractional Kirchhoff–Schrödinger–Poisson...
    • 16. Ruiz, D.: The Schrodinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
    • 17. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
    • 18. Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)
    • 19. Ghosh, S.: An existence result for singular nonlocal fractional Kirchhoff–Schrodinger–Poisson system. Complex Var. Elliptic Equ. 67,...
    • 20. Hansen, V.L.: Fundamental Concepts in Modern Analysis: An Introduction to Nonlinear Analysis, 2nd edn. World Scientific Publishing, Hackensack...
    • 21. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)
    • 22. Joachim, A., Alain, J.: Mathematical Physics of Quantum Mechanics, Lecture Notes in Phys., Berlin, Springer-Verlag (2006)
    • 23. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
    • 24. Lü, D.F.: Positive solutions for Kirchhoff–Schrodinger–Poisson systems with general nonlinearity. ¨ Commun. Pure Appl. Anal. 17, 605–626...
    • 25. Liu, X., Sun, Y.J.: Multiple positive solutions for Kirchhoff type problems with singularity. Commun. Pure Appl. Anal. 12, 721–733 (2013)
    • 26. Mahto, L., Abbas, S.: Approximate controllability and optimal control of impulsive fractional functional differential equations. J. Abstr....
    • 27. Mezouar, N., Boulaaras, S.: Global existence and decay of solutions for a class of viscoelastic Kirchhoff equation. Bull. Malays. Math....
    • 28. Ma, Y.K., Kavitha, K., Albalawi, W., Shukla, A., Nisar, K.S., Vijayakumar, V.: An analysis on the approximate controllability of Hilfer...
    • 29. Mohan Raja, M., Vijayakumar, V., Shukla, A., Nisar, K.S., Baskonus, H.M.: On the approximate controllability results for fractional integrodifferential...
    • 30. Meng, Y.X., Zhang, X.R., He, X.M.: Least energy sign-changing solutions for a class of fractional Kirchhoff–Poisson system. J. Math. Phys....
    • 31. Nguyen, H.T., Nguyen, H.C., Wang, R., Zhou, Y.: Initial value problem for fractional Volterra integrodifferential equations with Caputo...
    • 32. Ruiz, D.: The Schrodinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. ¨ 237, 655–674 (2006)
    • 33. Strauss, W.A.: Partial Differential Equations: An Introduction, 2nd edn. Wiley, Hoboken (2007)
    • 34. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order α ∈ (1, 2], Proceedings...
    • 35. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control....
    • 36. Wang, Y., Zhang, Z.H.: Ground state solutions for Kirchhoff–Schrodinger–Poisson system with sign- ¨ changing potentials. Bull. Malays....
    • 37. Xu, L.P., Chen, H.B.: Ground state solutions for Kirchhoff-type equations with a general nonlinearity in the critical growth. Adv. Nonlinear...
    • 38. Zhang, Q.: Existence, uniqueness and multiplicity of positive solutions for Schrodinger–Poisson system ¨ with singularity. J. Math. Anal....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno