Ir al contenido

Documat


On the Asymptotic Stability of Hilfer Fractional Neutral Stochastic Differential Systems with Infinite Delay

  • J. Pradeesh [1] ; V. Vijayakumar [1]
    1. [1] Vellore Institute of Technology
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article explores the existence and asymptotic stability in the p-th moment of mild solutions to a class of Hilfer fractional neutral stochastic differential equations with infinite delay in Hilbert spaces. To prove our main results, we use fractional calculus, stochastic analysis, semigroup theory, and the Krasnoselskii-Schaefer type fixed point theorem. Moreover, a set of novel sufficient conditions is derived for achieving the required result. Following that, we extend the given system to the Sobolev type and provided the existence results of the considered system. After that, we provided an example to illustrate the validity of our results.

  • Referencias bibliográficas
    • 1. Abbas, S., Benchohra, M., Lazreg, J.E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis and stability....
    • 2. Agarwal, S., Bahuguna, D.: Existence of solutions to Sobolev type partial neutral differential equations, J. Appl. Math. Stoch. Anal. 2006...
    • 3. Ahmed, H.M.: Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space. J. Theoret. Prob....
    • 4. Ahmed, H.M., El-Borai, M.M.: Hilfer fractional stochastic integrodifferential equations. Appl. Math. Comput. 331, 182–189 (2018)
    • 5. Ahmed, H.M., El-Borai, M.M., Ramadan, M.E.: Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with...
    • 6. Ahmed, H.M., El-Borai, M.M., El-Owaidy, H.M., Ghanem, A.S.: Existence solution and controllability of Sobolev type delay nonlinear fractional...
    • 7. Ahmed, H.M., El-Owaidy, H.M., AL-Nahhas, M. A.: Neutral fractional stochastic partial differential equations with Clarke subdifferential....
    • 8. Alzabut, J., Alobaidi, G., Hussain, S., Madi, E.N., Khan, H.: Stochastic dynamics of influenza infection: qualitative analysis and numerical...
    • 9. Alnafisah, Y., Ahmed, H.M.: Neutral delay Hilfer fractional integrodifferential equations with fractional Brownian motion. Evol. Eq. Control...
    • 10. Bahuguna, D., Sakthivel, R., Chadha, A.: Asymptotic stability of fractional impulsive neutral stochastic partial integrodifferential equations...
    • 11. Boutiara, A., Alzabut, J., Selvam, A.G.M., Vignesh, D.: Analysis and applications of sequential hybrid ψ-Hilfer fractional differential...
    • 12. Chadha, A., Bora, S.N.: Stability analysis for neutral stochastic differential equation of second order driven by Poisson jumps. J. Math....
    • 13. Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type. Mathematische Nachrichten 189(1), 23–31 (1998)
    • 14. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
    • 15. Diethelm, K.: The analysis of fractional differential equations, Lecture Notes in Mathematics, SpringerVerlag, Berlin, (2010)
    • 16. Diop, M.A., Zene, M.M.: On the asymptotic stability of impulsive neutral stochastic partial integrodifferential equations with variable...
    • 17. Diop, M.A., Ezzinbi, K., Lo, M.: Asymptotic stability of impulsive stochastic partial integrodifferential equations with delays. Int....
    • 18. El-Borai, M.M., Moustafa, O.L., Ahmed, H.M.: Asymptotic stability of some stochastic evolution equations. Appl. Math. Comput. 144(2–3),...
    • 19. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math....
    • 20. Gou, H., Li, Y.: Extremal mild solutions to Hilfer evolution equations with non-instantaneous impulses and nonlocal conditions. Fract....
    • 21. Gou, H.: Study on Sobolev type Hilfer evolution equations with non-instantaneous impulses. Int. J. Comput. Math. 100(5), 1153–1170 (2023)
    • 22. Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257,...
    • 23. Guo, Y., Shu, X.B., Li, Y., Xu, F.: The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral...
    • 24. Hilfer, R.: Application of fractional calculus in physics. World Scientific, Singapore (2000)
    • 25. Hojjat, A., Marasi, H.R., Jehad, A.: Applications of new contraction mappings on existence and uniqueness results for implicit ϕ-Hilfer...
    • 26. Hussain, S., Madi, E.N., Khan, H., Gulzar, H., Etemad, S., Rezapour, S., Kaabar, M.K.: On the stochastic modeling of COVID-19 under the...
    • 27. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and applications of fractional differential equations, North-Holland Mathematics...
    • 28. Lakshmikantham, V., Leela, S., Devi, J. V.: Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, (2009)
    • 29. Lima, K.B., da Vanterler, C., Sousa, J., De Oliveira, E.C.: Ulam-Hyers type stability for ψ-Hilfer fractional differential equations with...
    • 30. Li, P., Gao, R., Xu, C., Lu, Y., Shang, Y.: Dynamics in a fractional order predator-prey model involving Michaelis Menten type functional...
    • 31. Liu, Y., Ruan, D.: Stability of a class of impulsive neutral stochastic functional partial differential equations. Discret. Dyn. Nat....
    • 32. Lv, J., Yang, X.: Approximate controllability of Hilfer fractional neutral stochastic differential equations. Dyn. Syst. Appl. 27(4),...
    • 33. Maheswari, R., Karunanithi, S.: Asymptotic stability of stochastic impulsive neutral partial functional differential equations. Int. J....
    • 34. Mao, X.: Stochastic Differential Equations and Applications, Woodhead publishing, (2007)
    • 35. Pazy, A.: Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44. Springer-Verlag,...
    • 36. Pandey, R., Shukla, C., Shukla, A., Upadhyay, A., Singh, A.K.: A new approach on approximate controllability of Sobolev-type Hilfer fractional...
    • 37. Podlubny, I.: Fractional differential equations, San Diego. Academic Press, CA (1999)
    • 38. Pradeesh, J., Vijayakumar, V.: An analysis on asymptotic stability of Hilfer fractional stochastic evolution equations with infinite delay....
    • 39. Rezazadeh, H., Aminikhah, H., Sheikhani, A.R.: Stability analysis of Hilfer fractional differential systems. Math. Commun. 21, 45–64 (2016)
    • 40. Sakthivel, R., Luo, J.: Asymptotic stability of nonlinear impulsive stochastic differential equations. Stat. Prob. Lett. 79, 1219–1223...
    • 41. Sakthivel, R., Luo, J.: Asymptotic stability of impulsive stochastic partial differential equations with infinite delays. J. Math. Anal....
    • 42. Sakthivel, R., Revathi, P., Mahmudov, N.I.: Asymptotic stability of fractional stochastic neutral differential equations with infinite...
    • 43. Sathiyaraj, T., Wang, J.R., Balasubramaniam, P.: Ulam’s stability of Hilfer fractional stochastic differential systems. Eur. Phys. J....
    • 44. Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order (1, 2] stochastic delay differential...
    • 45. Taniguchi, T.: Asymptotic stability theorems of semilinear stochastic evolution equations in Hilber spaces. Stoch. Stoch. Reports 53,...
    • 46. Yan, Z., Zhang, H.: Asymptotic stability of fractional impulsive neutral stochastic partial integrodifferential equations with state dependent...
    • 47. Yang, M., Wang, Q.R.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Meth. Appl....
    • 48. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
    • 49. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010)
    • 50. Zhou, Y., Zhang, L., Shen, X.H.: Existence of mild solutions for fractional evolution equations. J. Integr. Eq. Appl. 25(4), 557–586 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno