Ir al contenido

Documat


Minimal-Speed Selection to a Lotka–Volterra Competition System with Local Versus Nonlocal Diffusions and Cubic Nonlinearity

  • Jiali Zhan [1] ; Jiding Liao [1] ; Hongyong Wang [1]
    1. [1] University of South China
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 4, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01006-y
  • Enlaces
  • Resumen
    • In this paper, the minimal-speed selection mechanism to a Lotka–Volterra type of model with local versus nonlocal diffusions and cubic nonlinearity is considered.

      By using comparison principle and upper-lower solution method, general criteria for both linear and nonlinear selection of the minimal wave speed are derived. Based on these results, several explicit conditions for determining the linear selection of the minimal wave speed are obtained via the constructions of various upper solutions.

      These conditions can help us to confirm that the species will spread with the speed of a linearised system and take an insight into thresholds for different model parameters.

      Moreover, it is found that the model with cubic nonlinearity causes a very different mechanism compared to the one caused by quadratic nonlinearity. For example, the linear selection can be realized when the diffusion strength is in an infinite interval for the model with cubic nonlinearity. Finally, it should be pointed out that concrete conditions for nonlinear selection are not obtained due to the failure of construction of a lower solution, and are left for further work.

  • Referencias bibliográficas
    • 1. Alhasanat, A., Ou, C.: On a conjecture raised by Yuzo Hosono. J. Dyn. Differ. Equ. 31, 287–304 (2019)
    • 2. Alhasanat, A., Ou, C.: Minimal-speed selection of traveling waves to the Lotka–Volterra competition model. J. Differ. Equ. 266, 7357–7378...
    • 3. Berestycki, H., Diekmann, O., Nagelkerke, C.J., Zegeling, P.A.: Can a species keep pace with a shifting climate? Bull. Math. Biol. 71,...
    • 4. Chu, Y.-M., Jneid, M., Chaouk, A., Inc, M., Rezazadeh, H., Houwe, A.: Local time fractional reduced differential transform method for solving...
    • 5. Du, L.-J., Li, W.-T., Wu, S.-L.: Propagation phenomena for a bistable Lotka–Volterra competition system with advection in a periodic habitat....
    • 6. Fang, J., Zhao, X.-Q.: Traveling for monotone semiflow with weak compactness, SIAM. J. Math. Anal. 46, 3678–3704 (2014)
    • 7. Gilpin, M.E., Ayala, F.J.: Global models of growth and competition. Proc. Natl. Acad. Sci. 70, 3590– 3593 (1973)
    • 8. Guo, J.-S., Liang, X.: The minimal speed of traveling fronts for the Lotka–Volterra competition system. J. Dyn. Differ. Equ. 23, 353–363...
    • 9. Hao, Y.-C., Zhang, G.-B.: The dynamics of traveling wavefronts for a nonlocal delay competition system with local vs. nonlocal diffusions....
    • 10. Hou, X.-J., Wang, B., Zhang, Z.-C.: Mutual inclution in a nonlocal competitive LotkaVolterra system, Japan. J. Indust. Appl. Math. 31,...
    • 11. Huang, M.D., Wu, S.L., Zhao, X.Q.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)
    • 12. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)
    • 13. Ignat, L., Rossi, J.: A nonlocal convection–diffusion equation. J. Funct. Anal. 251, 1167–1189 (2007)
    • 14. Iqbal, N., Wu, R., Mohammed, W.W.: Pattern formation induced by fractional cross-diffusion in a 3-species food chain model with harvesting....
    • 15. Kao, C.-Y., Lou, Y., Shen, W.-X.: Random dispersal vs. nonlocal dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)
    • 16. Kumar, D., Yildirim, A., Kabaar, M. K. A., Razazadeh, H. Samei, M. E.: Exploration of some novel solutions to a coupled Schrödinger-KdV...
    • 17. Li, L., Sheng, W.-J., Wang, M.-X.: Systems with nonlocal vs. local diffusions and free boundaries. J. Math. Anal. Appl. 483, 123646 (2020)
    • 18. Ma, M., Carretero-Gon´zalez, R., Kevrekidis, P.G., Frantzeskakis, D.J., Malomed, B.A.: Controlling the transverse instability of dark...
    • 19. Matsuda, H., Ogita, N., Sasaki, A., Sato, K.: Statistical mechanics of population: the lattice Lotka– Volterra model. Prog. Theor. Phy....
    • 20. Mohammed, W.W., Aly, E.S., Matouk, A.E.: An analytical study of the dynamic behavior of Lotka– Volterra based models of COVID-19. Results...
    • 21. Mohammed, W.W., Iqbal, N.: Impact of the same degenerate additive noise on a couple system of fractional space diffusion equations. Fractals...
    • 22. Murray, J.: Mathematical Biology, 2nd edn. Springer-verlag, New York (1993)
    • 23. Pan, C., Wang, H., Ou, C.: Invasive speed for a competition–diffusion system with three species. Discrete Contin. Dyn. Syst. Ser. B 27,...
    • 24. Pan, S.-X., Guo, L.: Invasion traveling wave solutions of a competitive system with dispersal. Bound. Value Probl. 120, 1–11 (2012)
    • 25. Pang, L.Y., Wu, S.L., Ruan, S.G.: Long time behaviors for a periodic Lotka–Volterra strong competition–diffusion system. Calc. Var. Part....
    • 26. Soave, N., Zilio, A.: Uniform bounds for strongly competing systems: the optimal Lipschitz case. Arch. Ration. Mech. Anal. 218, 647–697...
    • 27. Tang, Y., Pan, C., Wang, H., Ouyang, Z.: Speed determinacy of travelling waves for a three-component lattice Lotka–Volterra competition...
    • 28. Wang, J., Yu, Z.-X., Meng, Y.: Existence and stability of invasion traveling waves for a competition system with random vs. nonlocal dispersals....
    • 29. Wang, J.-P.,Wang,M.-X.: Free boundary problems with nonlocal and local diffusions I: Global solution. J. Math. Anal. Appl. 490, 123974...
    • 30. Wang, J.-P., Wang, M.-X.: Free boundary problems with nonlocal and local diffusions II: spreadingvanishing and long-time behavior. Discrete...
    • 31. Wang, H., Huang, Z., Ou, C.: Speed selection for the wavefronts of the lattice Lotka–Volterra competition system. J. Differ. Equ. 268,...
    • 32. Wang, H., Ou, C.: Propagation speed of the bistable traveling wave to the Lotka–Volterra competition system in a periodic habitat. J....
    • 33. Wang, H., Ou, C.: Propagation direction of the traveling wave for the Lotka–Volterra competitive lattice system. J. Dyn. Differ. Equ....
    • 34. Wang, H., Wang, H., Ou, C.: Spreading dynamics of a Lotka–Volterra competition model in periodic habitats. J. Differ. Equ. 270, 664–693...
    • 35. Wang, H., Pan, C., Ou, C.: Propagation dynamics of forced pulsating waves of a time periodic Lotka– Volterra competition system in a shifting...
    • 36. Wang, W.L., Kevrekidis, P. G., Carretero-Gon´zalez, R., Frantzeskakis, D.J., Kaper, Tasso J., Ma, M.: Stabilization of ring dark solitons...
    • 37. Wu, S.L., Zhao, H.Q., Zhang, X., Hsu, C.H.: Propagation dynamics for a time-periodic epidemic model in discrete media. J. Differ. Equ....
    • 38. Xu, W.-B., Li, W.-T., Lin, G.: Nonlocal dispersal cooperative systems: acceleration propagation among species. J. Differ. Equ. 268, 1081–1105...
    • 39. Yang, Z.-J., Zhang, G.-B.: Speed selection for a Lotka–Volterra competitive system with local vs. nonlocal diffusions. Qual. Theor. Dyn....
    • 40. Younas, U., Ren, J.-L., Akinyemi, L., Rezazadeh, H.: On the multiple explicit exact solutions to the double-chain DNA dynamical system....
    • 41. Yu, Z.-X., Xu, F., Zhang, W.-G.: Stability of invasion traveling waves for a competition system with nonlocal dispersals. Appl. Anal....
    • 42. Zhang, G.-B., Dong, F.-D., Li, W.-T.: Uniqueness and stability of traveling waves for a three-species competition system with nonlocal...
    • 43. Zhang, G.-B., Ma, R.-Y., Li, X.-S.: Traveling waves for a Lotka–Volterra strong competition system with nonlocal dispersal. Discrete Contin....
    • 44. Zhang, G.-B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc....
    • 45. Zhang, Q.-M., Han, Y.-Z., Horssen, W.-T., Ma, M.: Spreading speeds and monostable waves in a reaction–diffusion model with nonlinear competition....
    • 46. Zhang, T.-T., Li, W.-X., Han, Y.-Z., Ma, M.: Global exponential stability of bistable traveling waves in a reaction-diffusion system with...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno