Ir al contenido

Documat


Speed Selection for a Lotka–Volterra Competitive System with Local vs. Nonlocal Diffusions

  • Zheng-Jie Yang [1] ; Guo-Bao Zhang [1]
    1. [1] Northwest Normal University

      Northwest Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the minimal wave speed selection mechanism for a Lotka–Volterra competitive system with local vs. nonlocal diffusions. By a change of variables, we transform the competitive system into cooperative system. Then we employ the upper and lower solutions method to study the minimal wave speed selection mechanism: linear or nonlinear. For the linear selection, we concentrate on constructing suitable upper solutions. For the nonlinear selection, we focus only on the construction of lower solutions.

  • Referencias bibliográficas
    • 1. Alhasanat, A., Ou, C.: Stability of traveling waves to the Lotka–Volterra competition model. Complexity (2019). https://doi.org/10.1155/2019/6569520
    • 2. Alhasanat, A., Ou, C.: On a conjecture raised by Yuzo Hosono. J. Dyn. Differ. Equ. 31, 287–304 (2019)
    • 3. Alhasanat, A., Ou, C.: Minimal-speed selection of traveling waves to the Lotka–Volterra competition model. J. Differ. Equ. 266, 7357–7378...
    • 4. Alhasanat, A., Ou, C.: On the conjecture for the pushed wavefront to the diffusive Lotka–Volterra competition model. J. Math. Biol. 80,...
    • 5. Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138,...
    • 6. Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. J. Math. Pure Appl. 86, 271–291 (2006)
    • 7. Dong, F.-D., Li, W.-T., Wang, J.-B.: Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its...
    • 8. Fang, J., Zhao, X.Q.: Bistable traveling waves for monotone semiflows with applications. J. Eur. Math. Soc. 17, 2243–2288 (2015)
    • 9. Fife, P.: Some nonclassical trends in parabolic-like evolutions. In: Kirkilionis, M., Krämker S., Rannacher R., Tomi F. (eds.) Trends in...
    • 10. Guo, J.-S., Wu, C.-H.: Traveling wave front for a two-component lattice dynamical system arising in competition models. J. Differ. Equ....
    • 11. Hao, Y.-C., Zhang, G.-B.: The dynamics of traveling wavefronts for a nonlocal delay competition system with local vs nonlocal diffusions....
    • 12. He, J., Zhang, G.-B.: The minimal speed of traveling wavefronts for a three-component competition system with nonlocal dispersal. Int....
    • 13. Hou, X.J., Wang, B., Zhang, Z.C.: Mutual inclution in a nonlocal competitive Lotka–Volterra system. Jpn. J. Ind. Appl. Math. 31, 87–110...
    • 14. Huang, Z., Ou, C.: Speed determinacy of traveling waves to a stream-population model with Allee effect. SIAM J. Appl. Math. 80, 1820–1840...
    • 15. Hutson, V., Martinez, S., Mischaikow, K., Vickers, G.T.: The evolution of dispersal. J. Math. Biol. 47, 483–517 (2003)
    • 16. Kan-on, Y.: Fisher wave fronts for the Lotka–Volterra competition model with diffusion. Int. Multidiscip. 28, 145–164 (1997)
    • 17. Kao, C.Y., Lou, Y., Shen, W.X.: Random dispersal vs. nonlocal dispersal. Discrete Contin. Dyn. Syst. 26, 551–596 (2010)
    • 18. Li, B., Weinberger, H.F., Lewis, M.A.: Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci. 196, 82–98 (2005)
    • 19. Li, L., Sheng, W.J., Wang, M.X.: Systems with nonlocal vs. local diffusions and free boundaries. J. Math. Anal. Appl. 483, 123646 (2020)
    • 20. Li, W.-T., Zhang, L., Zhang, G.-B.: Invasion entire solutions in a competition system with nonlocal dispersal. Discrete Contin. Dyn. Syst....
    • 21. Li, W.-T., Wang, J.-B., Zhao, X.-Q.: Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear...
    • 22. Liang, X., Zhao, X.Q.: Asymptotic speeds of spread and traveling waves for monotone semilows with applications. Commun. Pure Appl. Math....
    • 23. Pan, C.-H., Wang, H.-Y., Ou, C.: Invasive speed for a competition–diffusion system with three species. Discrete Contin. Dyn. Syst. Ser....
    • 24. Tang, Y., Pan, C.-H., Wang, H.-Y., et al.: Speed determinacy of travelling waves for a three-component lattice Lotka–Volterra competition...
    • 25. Wang, H.Y., Huang, Z., Ou, C.: Speed selection for the wavefronts of the lattice Lotka–Volterra competition system. J. Differ. Equ. 268,...
    • 26. Wang, H.Y., Wang, H.L., Ou, C.: Spreading dynamics of a Lotka–Volterra competition model in periodic habitats. J. Differ. Equ. 270, 664–693...
    • 27. Wang, H.Y., Pan, C.H.: Speed selection of wavefronts for lattice Lotka–Volterra competition system in a time periodic habitat. J. Math....
    • 28. Wang, J., Yu, Z.-X., Meng, Y.: Existence and stability of invasion traveling waves for a competition system with random vs. nonlocal dispersals....
    • 29. Wang, J.P., Wang, M.X.: Free boundary problems with nonlocal and local diffusions II: spreadingvanishing and long-time behavior. Discrete...
    • 30. Wang, J.P., Wang, M.X.: Free boundary problems with nonlocal and local diffusions I: global solution. J. Math. Anal. Appl. 490, 123974...
    • 31. Xu, W.-B., Li, W.-T., Lin, G.: Nonlocal dispersal cooperative systems: acceleration propagation among species. J. Differ. Equ. 268, 1081–1105...
    • 32. Zhang, G.-B., Dong, F.-D., Li, W.-T.: Uniqueness and stability of traveling waves for a three-species competition system with nonlocal...
    • 33. Zhang, G.-B., Zhao, X.-Q.: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal. Calc....
    • 34. Zhang, Y.F., Wu, S.-L.: Minimal-speed selection of traveling fronts to a three components lattice competition system. Int. J. Biomath....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno