Ir al contenido

Documat


On the Number of Limit Cycles Bifurcating from the Linear Center with a Cubic Switching Curve

  • Ranran Jia [1] ; Liqin Zhao [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-00986-1
  • Enlaces
  • Resumen
    • This paper studies the bifurcations of limit cycles from the system x˙ = y, y˙ = −x with the switching curve y = x3/3 − x under the perturbations of arbitrary polynomials of x and y with degree n. We obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating from h ∈ (0, 3/2) if the first order Melnikov function is not identically 0. When the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first order Melnikov function. We also give an example to illustrate our result.

  • Referencias bibliográficas
    • 1. Bastos, J., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold....
    • 2. Benabdallah, I., Benterki, R., Llibre, J.: The limit cycles of a class of piecewise differential systems. Bol. Soc. Mat. Mex. 29, 62 (2023)
    • 3. Cen, X., Liu, C., Yang, L., Zhang, M.: Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential...
    • 4. Coll, B., Gasull, A., Prohens, R.: Bifurcation of limit cycles from two families of centers. Dyn. Contin. Discrete Impuls. Syst. Ser. A...
    • 5. de Carvalho, T., Llibre, J., Tonon, D.J.: Limit cycles of discontinuous piecewise polynomial vector fields. J. Math. Anal. Appl. 449, 572–579...
    • 6. Francoise, J.P., Ji, H., Xiao, D., Yu, J.: Global dynamics of a piecewise smooth system for brain Lactate metabolism. Qual. Theory Dyn....
    • 7. Gasull, A., Torregrosa, J., Zhang, X.: Piecewise linear differential systems with an algebraic line of separation. Electron. J. Differ....
    • 8. Grau, M., Mañosas, F., Villadelprat, J.: A Chebyshev criterion for Abelian integrals. Trans. Amer. Math. Soc. 363, 109–129 (2011)
    • 9. Ito, T.: A Filippov solution of a system of differential equations with discontinuous right-hand sides. Econom. Lett. 4, 349–354 (1979)
    • 10. Li, C., Zhang, Z.: Remarks on 16th weak Hilbert problem for n = 2. Nonlinearity. 15, 1975–1992 (2002)
    • 11. Li, S., Liu, C.: A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system. J. Math....
    • 12. Li, T., Llibre, J.: On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems. J. Dynam. Differ. Eq. 35,...
    • 13. Liang, F., Han, M., Romanovski, V.G.: Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic...
    • 14. Llibre, J., de A. S. Menezes, L.: On the limit cycles of a class of discontinuous piecewise linear differential systems. Discret. Contin....
    • 15. Llibre, J., Mereu, A.C.: Limit cycles for discontinuous quadratic differential systems with two zones. J. Math. Anal. Appl. 413, 763–775...
    • 16. Llibre, J., Tang, Y.: Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discret....
    • 17. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve. Internat....
    • 18. Mañosas, F., Villadelprat, J.: Bounding the number of zeros of certain Abelian integrals. J. Differ. Eq. 251, 1656–1669 (2011)
    • 19. Novaes, D.D., Torregrosa, J.: On extended Chebyshev systems with positive accuracy. J. Math. Anal. Appl. 448, 171–186 (2017)
    • 20. Ramirez, O., Alves, A.M.: Bifurcation of limit cycles by perturbing piecewise non-Hamiltonian systems with nonlinear switching manifold....
    • 21. Teixeira, M.: Perturbation theory for non-smooth systems. In: Perturbation theory-mathematics, methods and applications. Springer, New...
    • 22. Tian, H., Han, M.: Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with switching curve. Discret. Contin. Dyn. Syst....
    • 23. Wang, J., Zhao, L., Zhou, J.: On the number of limit cycles bifurcating from the linear center with an algebraic switching curve. Qual....
    • 24. Xiong, Y., Hu, J.: Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points....
    • 25. Yang, J.: Limit cycles appearing from the perturbation of differential systems with multiple switching curves. Chaos Solitons Fractals...
    • 26. Zou, C., Liu, C., Yang, J.: On piecewise linear differential systems with n limit cycles of arbitrary multiplicities in two zones. Qual....
    • 27. Zou, L., Zhao, L., Wang, J.: The exact bound of the number of limit cycles bifurcating from the global nilpotent center with a nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno