Ir al contenido

Documat


On a System of Sequential Caputo-Type p-Laplacian Fractional BVPs with Stability Analysis

  • Hira Waheed [1] ; Akbar Zada [1] ; Ioan-Lucian Popa [2] ; Sina Etemad [3] ; Shahram Rezapour [4]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

    2. [2] University of Alba Iulia & Transilvania University of Braso
    3. [3] Azarbaijan Shahid Madani University & Al-Ayen University&
    4. [4] Azarbaijan Shahid Madani University & China Medical University Hospital China Medical University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The main purpose of the paper is to study the qualitative theory of the solutions of a multi-point sequential Caputo–type p–Laplacian coupled system. The existence and uniqueness of the solution of the aforementioned system are studied with the help of fixed point theorems and properties of a p–Laplacian operator. Furthermore, the Hyers–Ulam stability and generalized Hyers–Ulam stability are also investigated. For the validity of the obtained results, an illustrative example is given.

  • Referencias bibliográficas
    • 1. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
    • 2. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of the Fractional Differential Equations, North–Holland Mathematics...
    • 3. Bonyah, E., Chukwu, C. W., Juga, M. L., Fatmawati.: Modeling fractional-order dynamics of Syphilis via Mittag-Leffler law. AIMS Math. 6(8),...
    • 4. Thabet, S.T.M., Abdo, M.S., Shah, K.: Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving...
    • 5. Abdo, M.S., Hanan, K.S., Satish, A.W., Pancha, K.: On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative....
    • 6. Abbas, N., Nadeem, S., Sial, A., Shatanawi, W.: Numerical analysis of generalized Fourier’s and Fick’s laws for micropolar Carreaufluid...
    • 7. Abbas, N., Shatanawi,W., Shatnawi, T.A.M.: Numerical approach for temperature dependent properties of sutterby fluid flow with induced...
    • 8. Khan, A., Shah, K., Abdeljawad, T., Alqudah, M.A.: Existence of results and computational analysis of a fractional order two strain epidemic...
    • 9. Abuasbeh, K., Shafqat, R., Alsinai, A., Awadalla, M.: Analysis of controllability of fractional functional random integroevolution equations...
    • 10. Asamoah, J.K.K., Okyere, E., Yankson, E., Opoku, A.A., Adom-Konadu, A., Acheampong, E., Arthur, Y.D.: Non-fractional and fractional mathematical...
    • 11. Abbas, N., Shatanawi, W., Shatnawi, T.A.M.: Theoretical analysis of modified non-Newtonian micropolar nanofluid flow over vertical Riga...
    • 12. Abbas, N., Shatanawi, W., Abodayeh, K., Shatnawi, T.A.M.: Comparative analysis of unsteady flow of induced MHD radiative Sutterby fluid...
    • 13. Abbas, N., Tumreen, M., Shatanawi, W., Qasim, M., Shatnawi, T.A.M.: Thermodynamic properties of second grade nanofluid flow with radiation...
    • 14. Wu, Y., Ahmad, S., Ullah, A., Shah, K.: Study of the fractional-order HIV-1 infection model with uncertainty in initial data. Math. Probl....
    • 15. Zarin, R., Khaliq, H., Khan, A., Khan, D., Akgul, A., Humphries, U.W.: Deterministic and fractional modeling of a computer virus propagation....
    • 16. Li, P., Gao, R., Xu, C., Ahmad, S., Li, Y., Akgul, A.: Bifurcation behavior and PD control mechanism of a fractional delayed genetic regulatory...
    • 17. Li, P., Gao, R., Xu, C., Lu, Y.: Dynamics in a fractional order predator-prey model involving MichaelismentenI type functional responses...
    • 18. Li, P., Gao, R., Xu, C., Lu, Y., Akgul, A., Baleanu, D.: Dynamics exploration for a fractional-order delayed Zooplankton-Phytoplankton...
    • 19. Li, P., Peng, X., Xu, C., Han, L., Shi, S.: Novel extended mixed controller design for bifurcation control of fractional-order Myc/E2F/miR-17-92...
    • 20. Xu, C., Cui, Q., Liu, Z., Pan, Y., Cui, X., Ou, W., Rahman, M., Farman, M., Ahmad, S., Zeb, A.: Extended hybrid controller design of bifurcation...
    • 21. Abbas, N., Shatanawi, W., Hasan, F., Mustafa, Z.: Thermodynamic flow of radiative induced magneto modified Maxwell Sutterby fluid model...
    • 22. Humaira, Y., Hammad, H.A., Sarwar, M., De la Sen, M.: Existence theorem for a unique solution to a coupled system of impulsive fractional...
    • 23. Hammad, H.A., Zayed, M.: Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations. Bound. Value Probl....
    • 24. Hammad, H.A., Rashwan, R.A., Nafea, A., Samei, M.E., Noeiaghdam, S.: Stability analysis for a tripled system of fractional pantograph...
    • 25. Asaduzzaman, Md., Ali, M.Z.: Existence of multiple positive solutions to the Caputo-type nonlinear fractional differential equation with...
    • 26. Abbas, M.I., Ragusa, M.A.: On the hybrid fractional differential equations with fractional proportional derivatives of a function with...
    • 27. Abbas,M.I., Ragusa,M.A.: Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag-Leffler functions. Appl....
    • 28. Ahmad, B., Ntouyas, S.K., Tariboon, J.: A nonlocal hybrid boundary value problem of Caputo fractional integro-differential equations....
    • 29. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation...
    • 30. Alsaedi, A., Hamdan, S., Ahmad, B., Ntouyas, S.K.: Existence results for coupled nonlinear fractional differential equations of different...
    • 31. Leibenson, L.S.: General problem of the movement of a compressible fluid in a porous medium. Izvestiya Akademii Nauk Kirgizskoi SSR 9(1),...
    • 32. Liang, Z., Han, X., Li, A.: Some properties and applications related to the (2, p)-Laplacian operator. Bound. Value Probl. 2016, 58 (2016)
    • 33. Khamessi, B., Hamiaz, A.: Existence and exact asymptotic behaviour of positive solutions for fractional boundary value problem with p-Laplacian...
    • 34. Bai, C.: Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator. Adv. Differ. Equ. 2018,...
    • 35. Khan, H., Tunc, C., Chen, W., Khan, A.: Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations...
    • 36. Jafari, H., Baleanu, D., Khan, H., Khan, R.A., Khan, A.: Existence criterion for the solutions of fractional order p-Laplacian boundary...
    • 37. Matar, M.M., Lubbad, A.A., Alzabut, J.: On p-Laplacian boundary value problems involving CaputoKatugampula fractional derivatives. Math....
    • 38. Shao, J., Guo, B.: Existence of solutions and Hyers-Ulam stability for a coupled system of nonlinear fractional differential equations...
    • 39. Ali, Z., Zada, A., Shah, K.: Ulam stability results for the solutions of nonlinear implicit fractional order differential equations. Hacet....
    • 40. Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311,...
    • 41. Khan, A., Li, Y., Shah, K., Khan, T.S.: On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions. Complexity...
    • 42. Sitho, S., Ntouyas, S.K., Samadi, A., Tariboon, J.: Boundary value problems for ψ-Hilfer type sequential fractional differential equations...
    • 43. Waheed, H., Zada, A., Rizwan, R., Popa, I.L.: Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian...
    • 44. Chikh, S.B., Amara, A., Etemad, S., Rezapour, S.: On Hyers-Ulam stability of a multi-order boundary value problems via Riemann-Liouville...
    • 45. Choucha, O., Amara, A., Etemad, S., Rezapour, S., Torres, D.F.M., Botmart, T.: On the Ulam-HyersRassias stability of two structures of...
    • 46. Petrusel, A., Rus, I.A.: Ulam Stability of Zero Point Equations, pp. 345–364. Springer, Cham (2019)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno