Ir al contenido

Documat


Hyers–Ulam Stability for a Coupled System of Fractional Differential Equation With p-Laplacian Operator Having Integral Boundary Conditions

  • Hira Waheed [1] ; Akbar Zada [1] ; Rizwan Rizwan [2] ; Ioan-Lucian Popa [3]
    1. [1] University of Peshawar

      University of Peshawar

      Pakistán

    2. [2] University of Buner (Pakistan)
    3. [3] University of Alba Iulia (Romania)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 21, Nº 3, 2022
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article we explore the existence, uniqueness, and stability for a coupled symmetric system of fractional differential equation with nonlinear p-Laplacian operator.

      Existence and uniqueness results are obtained by using the matrix eigenvalue method.

      Further, we study different types of Hyers–Ulam stability. In the last section an example concerning the proposed problem is presented.

  • Referencias bibliográficas
    • 1. Alam, M., Zada, A.: Implementation of q-calculus on q-integro-differential equation involving antiperiodic boundary conditions with three...
    • 2. Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30(1), 133–155 (1986)
    • 3. Bai, C.: Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator. Adv. Differ. Equ. 2018(1),...
    • 4. Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311,...
    • 5. Balachandran, K., Govindaraj, V.: Numerical controllability of fractional dynamical systems. Optimization 63(8), 1267–1279 (2014)
    • 6. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity....
    • 7. Gao, L., Wang, D., Wang, G.: Further results on exponential stability for impulsive switched nonlinear time delay systems with delayed...
    • 8. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)
    • 9. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27(4), 222 (1941)
    • 10. Isaia, F.: On a nonlinear integral equation without compactness. Acta Math. Univ. Comenian. 75, 233–240 (2006)
    • 11. Khamessi, B., Hamiaz, A.: Existence and exact asymptotic behaviour of positive solutions for fractional boundary value problem with p-Laplacian...
    • 12. Khan, A., Li, Y. Shah, K. Khan, T.S.: On coupled p-Laplacian fractional differential equations with nonlinear boundary conditions. Complexity,...
    • 13. Khan, H., Chen, W., Khan, A., Khan, T.S., Al-Madlal, Q.M.: Hyers-Ulam stability and existence criteria for coupled fractional differential...
    • 14. Khan, A., Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers–Ulam stability for a nonlinear singular fractional differential...
    • 15. Khan, A., Gómez-Aguilar, J.F., Abdeljawad, T., Khan, H.: Stability and numerical simulation of a fractional order plant-nectar-pollinator...
    • 16. Khan, H., Tunc, C., Khan, A.: Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential...
    • 17. Khan, H., Gómez-Aguilar, J.F., Abdeljawad, T., Khan, A.: Existence results and stability criteria for ABC-fuzzy-volterra integro-differential...
    • 18. Kilbas, A.A., Srivastava, H.M. Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics...
    • 19. Leibenson, L.S.: General problem of the movement of a compressible fluid in a porous medium. Izv. Akad. Nauk Kirg. SSR 9(1), 7–10 (1983)
    • 20. Li, F., Bao, Y.: Uniform stability of the solution for a Memory-type elasticity system with nonhomogeneous boundary control condition....
    • 21. Liang, Z., Han, X., Li, A.: Some properties and applications related to the (2, p)-Laplacian operator. Bound. Val. Probl. 2016(1), 1–17...
    • 22. Lu, H., Han, Z., Sun, S.: Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations...
    • 23. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Redding, Oxford (2006)
    • 24. Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.J.: On the fractional signals and systems. Signal Proc. 91(3), 350–371 (2011)
    • 25. Matar, M.M., Lubbad, A.A., Alzabut, J.: On p-Laplacian boundary value problems involving CaputoKatugampula fractional derivatives. Math....
    • 26. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
    • 27. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, New York (1999)
    • 28. Prasad, K.R., Krushna, B.M.B.: Multiple positive solutions for a coupled system of p-Laplacian fractional order two-point boundary value...
    • 29. Shao, J., Guo, B.: Existence of solutions and Hyers–Ulam stability for a coupled system of nonlinear fractional differential equations...
    • 30. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)
    • 31. Urs, C.: Ulam–Hyers stability for coupled fixed points of contractive type operators. J. Nonlinear Sci. Appl. 6(2), 124–136 (2013)
    • 32. Urs, C.: Coupled fixed point theorem and applications to periodic boundary value problem. Miskolic Math Notes 14, 323–333 (2013)
    • 33. Waheed, H., Zada, A., Xu, J.:Well-posedness and Hyers–Ulam results for a class of impulsive fractional evolution equations. Math. Methods...
    • 34. Wang, J.R., Zada, A., Waheed, H.: Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value...
    • 35. Wenchang, T., Wenxiao, P., Mingyu, X.: A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two...
    • 36. Yang, Z.Y., Blanke, M.: A unified approach to controllability analysis for hybrid systems. Nonlinear Anal. Hybrid Syst. 1(2), 212–222...
    • 37. Zada, A., Waheed, H.: Stability analysis of implicit fractional differential equation with anti-periodic integral boundary value problem....
    • 38. Zada, A., Waheed, H., Alzabut, J., Wang, X.: Existence and stability of impulsive coupled system of fractional integrodifferential equations....
    • 39. Zada, A., Alzabut, J., Waheed, H., Popa, I.: Ulam–Hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary...
    • 40. Zada, A., Pervaiz, B., Subramanian, M., Popa, I.L.: Finite time stability for nonsingular impulsive first order delay differential systems....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno