Ir al contenido

Documat


Classical and uniform exponents of multiplicative p -adic approximation

  • Autores: Yann Bugeaud, Johannes Schleischitz
  • Localización: Publicacions matematiques, ISSN 0214-1493, Vol. 68, Nº. 1, 2024, págs. 3-26
  • Idioma: inglés
  • DOI: 10.5565/PUBLMAT6812401
  • Enlaces
  • Resumen
    • Let p be a prime number and ξ an irrational p-adic number. Its irrationality exponent µ(ξ) is the supremum of the real numbers µ for which the system of inequalities 0 < max{|x|, |y|} ≤ X, |yξ − x|p ≤ X−µ has a solution in integers x, y for arbitrarily large real number X. Its multiplicative irrationality exponent µ×(ξ) (resp., uniform multiplicative irrationality exponent µb×(ξ)) is the supremum of the real numbers µb for which the system of inequalities 0 < |xy| 1/2 ≤ X, |yξ − x|p ≤ X−µb has a solution in integers x, y for arbitrarily large (resp., for every sufficiently large) real number X. It is not difficult to show that µ(ξ) ≤ µ×(ξ) ≤ 2µ(ξ) and µb×(ξ) ≤ 4. We establish that the ratio between the multiplicative irrationality exponent µ× and the irrationality exponent µ can take any given value in [1, 2]. Furthermore, we prove that µb×(ξ) ≤ (5 + √ 5)/2 for every p-adic number ξ.

  • Referencias bibliográficas
    • D. Badziahin and Y. Bugeaud, Multiplicative p-adic approximation, Michigan Math. J. 71(1) (2022), 121–143. DOI: 10.1307/mmj/20195785.
    • V. I. Bernik and M. M. Dodson, Metric Diophantine Approximation on Manifolds, Cambridge Tracts in Mathematics 137, Cambridge University Press,...
    • V. I. Bernik and I. L. Morotskaya, Diophantine approximations in Qp and Hausdorff dimension (Russian), Vests¯ı Akad. Navuk BSSR Ser. F¯ız.-Mat....
    • Y. Bugeaud, On simultaneous uniform approximation to a p-adic number and its square, Proc.Amer. Math. Soc. 138(11) (2010), 3821–3826. DOI:...
    • Y. Bugeaud and T. Pejkovic´, Explicit examples of p-adic numbers with prescribed irrationalityexponent, Integers 18A (2018), Paper no. A5,...
    • Y. Bugeaud and J. Schleischitz, On uniform approximation to real numbers, Acta Arith.175(3) (2016), 255–268. DOI: 10.4064/aa8372-7-2016.
    • Y. Bugeaud and J.-Y. Yao, Hankel determinants, Pad´e approximations, and irrationality exponents for p-adic numbers, Ann. Mat. Pura Appl....
    • M. Einsiedler and D. Kleinbock, Measure rigidity and p-adic Littlewood-typeproblems, Compos. Math. 143(3) (2007), 689–702. DOI: 10.1112/S0010437X0700...
    • V. Jarn´ık, Sur les approximations diophantiques des nombres p-adiques, Rev. Ci. (Lima) 47 (1945), 489–505.
    • E. Lutz ´ , Sur les approximations diophantiennes lin´eaires P-adiques, Actualit´es Scientifiques et Industrielles [Current Scientific and...
    • K. Mahler, Zur Approximation P-adischer Irrationalzahlen, Nieuw Arch. Wiskd. 18(2) (1934), 22–34.
    • K. Mahler, Uber Diophantische Approximationen im Gebiete der ¨ p-adischen Zahlen, Jahresber. Dtsch. Math.-Ver. 44 (1934), 250–255.
    • K. Mahler, Ein P-adisches Analogon zu einem Satz von Tchebycheff, Mathematica, Zutphen. B. 7 (1938), 2–6.
    • B. de Mathan, Sur l’approximation rationnelle p-adique, J. Th´eor. Nombres Bordeaux 31(2) (2019), 417–430. DOI: 10.5802/jtnb.1089.
    • N. Moshchevitin, A note on two linear forms, Acta Arith. 162(1) (2014), 43–50. DOI: 10.4064/aa162-1-2.
    • D. Roy, Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. (3) 88(1) (2004), 42–62. DOI: 10.1112/S002461150301428X.
    • J. Schleischitz, Cartesian product sets in Diophantine approximation with large Hausdorff dimension, Preprint (2020). arXiv:2002.08228v3.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno