Ir al contenido

Documat


Approximation to real numbers by cubic algebraic integers I

  • Autores: Damien Roy
  • Localización: Proceedings of the London Mathematical Society, ISSN 0024-6115, Vol. 88, Nº 1, 2004, págs. 42-62
  • Idioma: inglés
  • DOI: 10.1112/s002461150301428x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In 1969, H. Davenport and W. M. Schmidt studied the problem of approximation to a real number $\xi$ by algebraic integers of degree at most 3. They did so, using geometry of numbers, by resorting to the dual problem of finding simultaneous approximations to $\xi$ and $\xi^2$ by rational numbers with the same denominator. In this paper, we show that their measure of approximation for the dual problem is optimal and that it is realized for a countable set of real numbers $\xi$. We give several properties of these numbers including measures of approximation by rational numbers, by quadratic real numbers and by algebraic integers of degree at most 3.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno